
1 2019/01/07 Ullrich - Lean 4: A Guided Preview IPD Snelting

KIT

Programming paradigms group - IPD Snelting

Lean 4: A Guided Preview
Sebastian Ullrich

KIT – The Research University in the Helmholtz Association www.kit.edu



A brief history of Lean

2 2019/01/07 Ullrich - Lean 4: A Guided Preview IPD Snelting

KIT

Lean 0.1 (2014)
Lean 2 (2015)

first official release
fixed tactic language

Lean 3 (2017)
make Lean a meta-programming language: build tactics in Lean
backed by a bytecode interpreter

Lean 4 (201X)
make Lean a general-purpose language: native back end, FFI, ...
reimplement Lean in Lean



Lean 3 system overview

3 2019/01/07 Ullrich - Lean 4: A Guided Preview IPD Snelting

KIT

editor

language server

parser

elaborator

kernel compiler

tactic frameworkmodule system

FFI

C++

Lean

other



Lean 4 system overview and progress

3 2019/01/07 Ullrich - Lean 4: A Guided Preview IPD Snelting

KIT

editor

language server

parser

elaborator

kernel compiler

tactic frameworkmodule system

FFI

C++

Lean

other



Lean 4 system overview and progress

3 2019/01/07 Ullrich - Lean 4: A Guided Preview IPD Snelting

KIT

editor

language server

parser

elaborator

kernel compiler

tactic frameworkmodule system

FFI

C++

Lean

other



Lean 4 system overview and progress

3 2019/01/07 Ullrich - Lean 4: A Guided Preview IPD Snelting

KIT

editor

language server

parser

elaborator

kernel compiler

tactic frameworkmodule system

FFI

C++

Lean

other



Lean 4 system overview and progress

3 2019/01/07 Ullrich - Lean 4: A Guided Preview IPD Snelting

KIT

editor

language server

parser

elaborator

kernel compiler

tactic frameworkmodule system

FFI

C++

Lean

other



Lean 4 system overview and progress

3 2019/01/07 Ullrich - Lean 4: A Guided Preview IPD Snelting

KIT

editor

language server

parser

elaborator

kernel compiler

tactic frameworkmodule system

macro expander

FFI

C++

Lean

other



Lean 4 system overview and progress

3 2019/01/07 Ullrich - Lean 4: A Guided Preview IPD Snelting

KIT

editor

language server

parser

elaborator

kernel compiler

tactic frameworkmodule system

macro expander

FFI

C++

Lean

other



Lean 4 system overview and progress

3 2019/01/07 Ullrich - Lean 4: A Guided Preview IPD Snelting

KIT

editor

language server

parser

elaborator

kernel compiler

tactic frameworkmodule system

macro expander

FFI

C++

Lean

other



Lean 4 system overview and progress

3 2019/01/07 Ullrich - Lean 4: A Guided Preview IPD Snelting

KIT

editor

language server

parser

elaborator

kernel compiler

tactic frameworkmodule system

macro expander

FFI

C++

Lean

other



Lean 4 system overview and progress

3 2019/01/07 Ullrich - Lean 4: A Guided Preview IPD Snelting

KIT

editor

language server

parser

elaborator

kernel compiler

tactic frameworkmodule system

macro expander

FFI

C++

Lean

other



New parser [mostly implemented]

4 2019/01/07 Ullrich - Lean 4: A Guided Preview IPD Snelting

KIT

completely accessible and extensible

@[parser]

def my_inductive.parser : command_parser :=

node! my_inductive ["inductive",

name: ident_univ_params.parser,

sig: opt_decl_sig.parser,

ext: node! my_inductive_base ["extends", base: term.parser]?,

local_notation: notation_like.parser?,

intro_rules: intro_rule.parser*]

arbitrary local backtracking and tokenizing
concrete syntax tree fully accessible to tooling



New parser [mostly implemented]

4 2019/01/07 Ullrich - Lean 4: A Guided Preview IPD Snelting

KIT

completely accessible and extensible
arbitrary local backtracking and tokenizing

notation `{` xs:(foldr `, ` (x xs, set.insert x xs) ∅ `}`) := xs

notation `{` binder ` // ` r:(scoped p, subtype p) `}`) := r

notation `{` binder ` ∈ ` s ` | ` r:(scoped p, set.sep p s) `}` := r

def symbol_quote.parser : term_parser :=

node! symbol_quote [

left_quote: raw_str "`",

symbol: raw $ take_until (= '`'),

right_quote: raw_str "`" tt, -- consume trailing ws

prec: precedence.parser?]

concrete syntax tree fully accessible to tooling



New parser [mostly implemented]

4 2019/01/07 Ullrich - Lean 4: A Guided Preview IPD Snelting

KIT

completely accessible and extensible
arbitrary local backtracking and tokenizing
concrete syntax tree fully accessible to tooling

auto completion, document generation, code formatting, refactoring, ...
jump to definition and documentation of any syntax



Macros [mostly implemented?]

5 2019/01/07 Ullrich - Lean 4: A Guided Preview IPD Snelting

KIT

most general syntax sugars: arbitrary syntax tree transformations

@[parser]

def set_lit.parser : term_parser :=

node! set_lit ["{", elems: sep_by ", " term.parser, "}"]

@[transformer]

def set_lit.transformer : transformer :=

λ stx,

let v := view set_lit stx in

pure $ v.elems.foldr (λ x xs, `(set.insert %%x %%xs)) `(∅)

names are resolved (hygienically) only after expansion



Macros [mostly implemented?]

5 2019/01/07 Ullrich - Lean 4: A Guided Preview IPD Snelting

KIT

most general syntax sugars: arbitrary syntax tree transformations

syntax set_lit := `{` (sep_by ", " term.parser) `}`

syntax_translations set_lit

| {} := ∅

| {%%x, %%xs...} := set.insert %%x {%%xs...}

(hypothetical Isabelle-like macro-macros)

names are resolved (hygienically) only after expansion



Macros [mostly implemented?]

5 2019/01/07 Ullrich - Lean 4: A Guided Preview IPD Snelting

KIT

most general syntax sugars: arbitrary syntax tree transformations

def my_inductive.transformer : transformer :=

λ stx,

let v := view my_inductive stx in

pure $ review «inductive» {v with

intro_rules := match v.ext with

| some ext := {name := `base, sig := {params := [⟨`a, ext.base⟩]}} :: v.intro_rules

| none := v.intro_rules

}

end

names are resolved (hygienically) only after expansion



Macros [mostly implemented?]

5 2019/01/07 Ullrich - Lean 4: A Guided Preview IPD Snelting

KIT

most general syntax sugars: arbitrary syntax tree transformations
names are resolved (hygienically) only after expansion

@[parser]

def subty.parser : term_parser :=

node! subty ["{", x: binder.parser, " // ", cond: term.parser, "}"]

@[transformer]

def subtype.transformer : transformer :=

λ stx,

let v := view subty stx in

pure `(subtype (λ %%v.x, %%v.cond))



Macros [mostly implemented?]

5 2019/01/07 Ullrich - Lean 4: A Guided Preview IPD Snelting

KIT

most general syntax sugars: arbitrary syntax tree transformations
names are resolved (hygienically) only after expansion

syntax subty := `{` binder.parser ` // ` term.parser `}`

syntax_translations subty

| {%%x // %%cond} := subtype (λ %%x, %%cond)



Managing syntax [planned]

6 2019/01/07 Ullrich - Lean 4: A Guided Preview IPD Snelting

KIT

“How do I manage my domain-specific set of notations?”

namespace my_domain

@[parser] -- scoped by default

def my_notation.parser : term_parser := ...

...

end my_domain

...

open [parser] my_domain

...

Lean 2’s scoped attributes return!
Main lesson we learned from Lean 2:
Most attributes, like [reducible] and [simp] , should not be scoped (by
default)



Managing syntax [planned]

6 2019/01/07 Ullrich - Lean 4: A Guided Preview IPD Snelting

KIT

“How do I manage my domain-specific set of notations?”

namespace my_domain

-- @[parser]

def my_notation1.parser : term_parser := ...

...

end my_domain

...

local attribute [parser] my_domain.my_notation1

local attribute [parser] my_domain.my_notation2

local attribute [parser] my_domain.my_notation3

...

Hardly scalable...

namespace my_domain

@[parser] -- scoped by default

def my_notation.parser : term_parser := ...

...

end my_domain

...

open [parser] my_domain

...

Lean 2’s scoped attributes return!
Main lesson we learned from Lean 2:
Most attributes, like [reducible] and [simp] , should not be scoped (by
default)



Managing syntax [planned]

6 2019/01/07 Ullrich - Lean 4: A Guided Preview IPD Snelting

KIT

“How do I manage my domain-specific set of notations?”

namespace my_domain

@[parser] -- scoped by default

def my_notation.parser : term_parser := ...

...

end my_domain

...

open [parser] my_domain

...

Lean 2’s scoped attributes return!

Main lesson we learned from Lean 2:
Most attributes, like [reducible] and [simp] , should not be scoped (by
default)



Managing syntax [planned]

6 2019/01/07 Ullrich - Lean 4: A Guided Preview IPD Snelting

KIT

“How do I manage my domain-specific set of notations?”

namespace my_domain

@[parser] -- scoped by default

def my_notation.parser : term_parser := ...

...

end my_domain

...

open [parser] my_domain

...

Lean 2’s scoped attributes return!
Main lesson we learned from Lean 2:
Most attributes, like [reducible] and [simp] , should not be scoped (by
default)



Better trace logs [planned]

7 2019/01/07 Ullrich - Lean 4: A Guided Preview IPD Snelting

KIT

make traces structured and lazy

collect trace points during
initial elaboration

when full trace is
requested, re-elaborate



Better trace logs [planned]

7 2019/01/07 Ullrich - Lean 4: A Guided Preview IPD Snelting

KIT

make traces structured and lazy

collect trace points during
initial elaboration
when full trace is
requested, re-elaborate



More consistent namespacing [in progress]

8 2019/01/07 Ullrich - Lean 4: A Guided Preview IPD Snelting

KIT

open is now “sticky”

open nat

namespace nat

def random := 0

end nat

#check random

parameters have been removed to simplify resolution1

1https://github.com/coq/coq/issues/6254#issuecomment-450641538

https://github.com/coq/coq/issues/6254#issuecomment-450641538


More consistent namespacing [in progress]

8 2019/01/07 Ullrich - Lean 4: A Guided Preview IPD Snelting

KIT

open is now “sticky”

open nat

namespace nat

def random := 0

end nat

#check random

parameters have been removed to simplify resolution1

1https://github.com/coq/coq/issues/6254#issuecomment-450641538

https://github.com/coq/coq/issues/6254#issuecomment-450641538


Clarifying imports [proposal]

9 2019/01/07 Ullrich - Lean 4: A Guided Preview IPD Snelting

KIT

import init.data.set

import data.set -- ?

open set -- ??

import ...two_dirs_up

Connection between modules, packages, and namespaces in Lean 3 is not
very clear

Proposal: Prefix module name with package name, use syntax more
reminiscent of file paths

import "init/data/set"

import "mathlib/data/set"

open set

import "../../two_dirs_up"



Clarifying imports [proposal]

9 2019/01/07 Ullrich - Lean 4: A Guided Preview IPD Snelting

KIT

import init.data.set

import data.set -- ?

open set -- ??

import ...two_dirs_up

Connection between modules, packages, and namespaces in Lean 3 is not
very clear
Proposal: Prefix module name with package name, use syntax more
reminiscent of file paths

import "init/data/set"

import "mathlib/data/set"

open set

import "../../two_dirs_up"



Thoughts about eventual porting of Lean 3 code

10 2019/01/07 Ullrich - Lean 4: A Guided Preview IPD Snelting

KIT

syntax changes: mostly superficial, automatable

elaborator changes: probably not too drastic
library changes: mostly missing API, needs to be reimplemented

but not necessarily in the stdlib



Thoughts about eventual porting of Lean 3 code

10 2019/01/07 Ullrich - Lean 4: A Guided Preview IPD Snelting

KIT

syntax changes: mostly superficial, automatable
One possible path: Incrementally reimplement Lean 3 syntax as macros
first, then unfold them as final step

#lang lean3

import data.set

...

elaborator changes: probably not too drastic
library changes: mostly missing API, needs to be reimplemented

but not necessarily in the stdlib



Thoughts about eventual porting of Lean 3 code

10 2019/01/07 Ullrich - Lean 4: A Guided Preview IPD Snelting

KIT

syntax changes: mostly superficial, automatable
elaborator changes: probably not too drastic

library changes: mostly missing API, needs to be reimplemented
but not necessarily in the stdlib



Thoughts about eventual porting of Lean 3 code

10 2019/01/07 Ullrich - Lean 4: A Guided Preview IPD Snelting

KIT

syntax changes: mostly superficial, automatable
elaborator changes: probably not too drastic
library changes: mostly missing API, needs to be reimplemented

but not necessarily in the stdlib



Conclusion

11 2019/01/07 Ullrich - Lean 4: A Guided Preview IPD Snelting

KIT

Many core features are starting to take shape
Still much to be done
Eventually should have many opportunities for community to get us back
to and beyond Lean 3’s library



Conclusion

11 2019/01/07 Ullrich - Lean 4: A Guided Preview IPD Snelting

KIT

Many core features are starting to take shape
Still much to be done
Eventually should have many opportunities for community to get us back
to and beyond Lean 3’s library

Thank you!



Conclusion

11 2019/01/07 Ullrich - Lean 4: A Guided Preview IPD Snelting

KIT

Many core features are starting to take shape
Still much to be done
Eventually should have many opportunities for community to get us back
to and beyond Lean 3’s library

More presentations about Lean 4:
2018/08/03 Lean: past, present and future by Leo
2018/10/12 My internship report - new parser, mostly
2018/12/12 An optimized memory model for an interactive theorem prover

Find these and more at

https://leanprover.github.io/publications

http://leanprover.github.io/talks/LeanAtGalois.pdf
http://leanprover.github.io/presentations/20181012_MSR
https://www.youtube.com/watch?v=Bv0CXyhbJ5s
https://leanprover.github.io/publications

