Machine-Checked Proofs and
the Rise of Formal Methods in Mathematics

Leonardo de Moura
Senior Principal Applied Scientist - AWS
Chief Architect - Lean FRO

Formal methods

A set of techniques and specialized tools used to specify, design, and verify
complex systems with mathematical rigor.

Specify: Describe a system's desired behavior precisely.
Design: Develop system components with assurance they'll work as intended.

Verify: Prove or provide evidence that a system meets its specification.

Increased assurance of system correctness.

Formal methods & proof assistants

Proof assistants are software tools that assist you to:

Specify def max_spec (a b result : Nat) : Prop :=
result = a A result = b A (result = a v result = b)

Design def max (a b : Nat) : Nat :=
if a = b then
a
else
b

Verify theorem max_imp_spec (a b : Nat) : max_spec a b (max a b)
auto

Formal proofs (aka machine checkable proofs)

A logical argument that demonstrates a statement's truth within a formal system,
with each step rigorously defined and verified.

A small trustworthy program can check formal proofs.

theorem simple (a b c : Nat) : a=b->c=b-a=c:=

assume hl h2, Eq.trans hl (Eq.symm h2)

Formal proofs (aka machine checkable proofs)

A logical argument that demonstrates a statement's truth within a formal system,
with each step rigorously defined and verified.

A small trustworthy program can check formal proofs.

theorem simple (a b c : Nat) : a=b->c=b-a=c:=

assume hl h2, Eq.trans hl (Eq.symm h2)

a=b c=b

Machine checkable proofs in mathematics

It is the Ultimate Democratizer.
Things you say should not be taken on faith or authority.
It doesn't matter who you are.
If the proof can be checked the world can build on your work.

Addresses the “Trust Bottleneck”.

EW Proof Assistant & Programming Language

Based on dependent type theory

Goals
Extensibility, Expressivity, Scalability, Efficiency

A platform for
Formalized mathematics
Software development and verification
Developing custom automation and Domain Specific Languages

Small trusted kernel, external type/proof checkers

EW is and IDE fo formal methods

Lean is a development environment for formal methods.
Proofs and definitions are machine checkable.
The math community using Lean is growing rapidly. They love the system.

A compiler for mathematics: high-level language = kernel code

5 theorem euclid exists infinite primes (n : N) : 3 p, n = p A Prime p :=

6 let p := minFac (factorial n + 1)

7 have fl : (factorial n + 1) # 1 :=

8 ne of gt $ succ 1t succ' $ factorial pos _

9 have pp : Prime p :=

10 min fac prime f1

11 have np : n = p := le of not ge fun h => 1
12 have h: : p | factorial n := dvd factorial (min_fac pos) h

13 have h : p | 1 := (Nat.dvd add iff right hi).2 (min_fac dvd)

14 pp.not dvd one h:

15 Exists.intro p |

— V/N and formal mathematics

Mathlib > RingTheory > Finiteness.lean

82 /—— *kNakayama's Lemmaxx. Atiyah-Macdonald 2.5, Eisenbud 4.7, Matsumura 2.2,
83 [Stacks @oDV] (https://stacks.math.columbia.edu/tag/00DV) -/
84 theorem exists_sub_one_mem_and_smul_eq_zero_of_fg_of_le_smul {R : Type _} [CommRing R] {M : Type _}

85 [AddCommGroup M] [Module R M] (I : Ideal R) (N : Submodule R M) (hn : N.FG) (hin : N < I ¢ N)
86 dr:R, r—-1€IAVneEN, ren=(0: M) := by

87 rw [fg_def] at hn

88 rcases hn with (s, hfs, hs)

89 have : 3 r : R, r—-1€IANS=< (I « span R s).comap (LinearMap.lsmul RM r) A s € N := by
920 refine' (1, _, _, _)

91 - rw [sub_self]

92 exact I.zero_mem

93 + rw [hs]

94 intro n hn

95 rw [mem_comap]

96 change (1 : R) *n €1 N

97 rw [one_smul]

98 exact hin hn

99 - rw [« span_le, hs]

Should we trust £W7

Lean has a small trusted proof checker.

Do | need to trust the checker?

No, you can export your proof, and use external checkers. There
are checkers implemented in Haskell, Scala, Rust, etc.

You can implement your own checker.

tVN enables decentralized collaboration

Meta-programming Formal Proofs

Users extend Lean using Lean itself. You don't need to trust me to use my
Proof automation. proofs.

Visualization tools. You don't need to trust my proof

Custom notation. u . automation to use it.

Hack without fear.

l mathlib documentation
\

| style guide
documentation style guide
naming conventions

1 Library
} core

» data
| » init
| » system

mathlib

» algebra

v algebraic_geometry
» presheafed_space
EllipticCurve
Scheme
Spec
is_open_comap_C
locally_ringed_space
presheafed_space
prime_spectrum

V/N develops Mathlib

Community

algebraic_geometry.Scheme

| [Google site search |

theorem algebraic_geometry.Scheme.l_obj_op source
(X : algebraic_geometry.Scheme) :
algebraic_geometry.Scheme.l.obj (opposite.op X) =
X.X.to_SheafedSpace.to_PresheafedSpace.presheaf.obj (opposite.op T)
@[simp] source

theorem algebraic_geometry.Scheme.l_map {X Y :
(f: X —>Y):
algebraic_geometry.Scheme.l.map f =
f.unop.val.c.app (opposite.op T) »
(opposite.unop Y).X.to SheafedSpace.to_PresheafedSpace.presheaf

.map algebraic_geometry.LocallyRingedSpace.to_SheafedSpace

(topological_space.opens.le_map_top f.unop.val.base T).op

algebraic_geometry.Scheme®? }

theorem algebraic_geometry.Scheme.l_map_op
(fF: X —>Y):
algebraic_geometry.Scheme.l.map f.op =
f.val.c.app (opposite.op T) »
X.X.to_SheafedSpace.to_PresheafedSpace.presheaf.map
(topological_space.opens.le_map_top f.val.base T).op

source

algebraic_ geometry.Scheme

source

» Imports
» Imported by

algebraic_geometry.Scheme

algebraic_geometry.Scheme.Spec

algebraic_geometry.Scheme.
Spec_map
algebraic_geometry.Scheme.
Spec_map_2
algebraic_geometry.Scheme.
Spec_map_comp
algebraic_geometry.Scheme.
Spec_map_id
algebraic_geometry.Scheme.
Spec_obj
algebraic_geometry.Scheme.
Spec_obj_2
algebraic_geometry.Scheme.

The Lean Mathematical Library
The mathlib Community*

Abstract

This paper describes mathlib, a community-driven effort
to build a unified library of mathematics formalized in the
Lean proof assistant. Among proof assistant libraries, it is
distinguished by its dependently typed foundations, focus
on classical mathematics, extensive hierarchy of structures,
use of large- and small-scale automation, and distributed or-
ganization. We explain the architecture and design decisions
of the library and the social organization that has led to its
development.

Mathlib statistics

Counts

Contributors

310

Number of lines

Theorems
122987

Definitions
66599

1200000

1000000

800000

600000

400000

200000

Natural numbers

Lean perfectoid spaces

by Kevin Buzzard, Johan Commelin, and Patrick Massot

What is it about?

We explained Peter Scholze's definition of perfectoid spaces to computers, using the Lean theorem
prover, mainly developed at Microsoft Research by Leonardo de Moura. Building on earlier work by
many people, starting from first principles, we arrived at

Valuations

.
—— We fix a prime number p Lattices Adibisaaces
parameter (p : primes) B
/—— A perfectoid ring is a Huber ring that is complete, uniform,

that has a pseudo-uniformizer whose p-th power divides p in the power bounded subring,
and such that Frobenius is a surjection on the reduction modulo p.-/

structure perfectoid_ring (R : Type) [Huber_ring R] extends Tate_ring R : Prop :=
(complete : is_complete_hausdorff R)

(uniform : is_uniform R)

(ramified : 3 w : pseudo_uniformizer R, w™p | p in R°)

(Frobenius : surjective (Frob Re/p)) '.'-
/_

1
CLVRS ("complete locally valued ringed space") is a category mathove':flow
—

whose objects are topological spaces with a sheaf of complete topological rings
and an equivalence class of valuation on each stalk, whose support is the unique
maximal ideal of the stalk; in Wedhorn's notes this category is called 7.

A perfectoid space is an object of CLVRS which is locally isomorphic to Spa(A) with “ * ”

A a perfectoid ring. Note however that CLVRS is a full subcategory of the category Home What are perfeCtOId SpaceS ?
‘PreValuedRingedSpace' of topological spaces equipped with a presheaf of topological Questions Asked 9 years, 5 months ago Active 1 year, 5 months ago Viewed 49k times
rings and a valuation on each stalk, so the isomorphism can be checked in

PreValuedRingedSpace instead, which is what we do. Taas

=

7 Here is a completely different kind of answer to this question.
/—— Condition for an object of CLVRS to be perfectoid: every point should have an open

neighbourhood isomorphic to Spa(A) for some perfectoid ring A.-/
def is_perfectoid (X : CLVRS) : Prop :=
Vx: X, 3 (U: opens X) (A : Huber_pair) [perfectoid_ring Al,

67 Aperfectoid space is a term of type PerfectoidSpace in the Lean theorem prover.

(x €U) A (Spa A = U) "7 Here's a quote from the source code:
/—— The category of perfectoid spaces.-/ N " . . 5
def Perfectogi;ds}p:ace ’:= x CLVRg // is_perfectoid X} structure perfectoid_ring (R : Type) [Huber_ring R] extends Tate_ring R : Prop :=
- 9 (complete : is_complete_hausdorff R)

end

The EW ecosystem

Lean developers

Mathematicians Al Research Software Students
developers

mathlib

{ STRACTS

FLYPITCH

Lean perfectmd spaces

ard, Johan Commelin, and Patrick Massot

The EW ecosystem

Lean developers

.. ft
Mathematicians Al Research SOINEITE Students
developers

OpenAl GPT-f for Lean
Facebook Al

"This will help make Lean a prime choice for machine learning
research."

FR I_._ m™~_ 1. ~

@/;S-II_/IO Granduér-\allenge

The EVN ecosystem

Lean developers

. . f
Mathematicians Al Research SOHEEIE

Students
developers

A great language for Math is also a great language for
programming.

Lean is a language for "programming your proofs and proving your
programs”

The EVN ecosystem

Software
developers

We can reach self-motivated students with no access to formal math education.

The Lean Zulip Channel - https://leanprover.zulipchat.com

Condensed R-modules Oct 07

W Peter Scholze (corco

N~ Mymath understandingis that condensed Ab.{u+1} oughtto befunctorsfrom pProfinite.{u} to Ab.{u+1} ,and
then the index set 3 that appears will be, for a presheaf F', the disjoint union over all isomorphism classes of objects .S Stanislas Polu
of Profinite.{u} ofF(S). Now in ZFC universes, this disjoint union still lies in the u+1 universe.

lean-gptf OpenAl gpt-f key Oct 08

@Ayush Agrawal | let me check ¢

But what you say above indicates that this is also true, as long as the index set of S's is still in universe u . Well, itisn't & 1

quite - it's a bit larger, but still much smaller than u+1 in terms of ZFC universes. .
We had a bit of a backlog

So maybe that it helps to take instead functors from Profinite.{u} to Ab.{u+2} ? Then|'m pretty sure profinite. Good thinkyou reached out. Invites are out

{u} liesin Type.{u+1} ,sothat disjoint union ofF(S)'s above should liein Type.{u+2} , and this should be good
enough. But! Note that the model is quite stale. We're working on updating it, but don't be surprised if it's not super useful as it
was trained on a rather old snaphost of mathlib

& 1

Cyclotomic field defn Oct 25

@ Eric Rodriguez 10:09
I noticed this project so far is working with adjoin_root cyclotomic .lwonder if instead, xAn-1.splitting_field isa
better option. | think the second option is better suited to Galois theory (as then the .gal has good defeq) and also
easier to generalise to other fields. (it works for all fields with n # 0, whilst | think this one may not)

general Bachelor thesis accomplished €/ Today

new members vVYXxyz:Axzy->(xzzVy#z):= &) Giacomo Maletto

QK& Hello, I'm a math student at University of Turin and I've been using proof assistants for about a year, with the objective of

Jia Xuan Ng (om0 formalizing a computer science paper written by my advisor (about a class of functions similar in spirit to primitive

Hieveryone, I'm trying to prove Vxy z: A, x #y > (x #Z V y #) :=, which | believe to be provable. recursive functions, but which are all invertible).

Reason why this is is because | use implication logical equivalences e.g. P > Q === PV Q such that | derived: After a lot of work here's my thesis! https://github.com/GiacomoMaletto/RPP/blob/main/Tesi/main.pdf (Lean code in the
X#ZYy>-(x#z)>y#z==>x#Yy->x=z-Yy#zwhichis essentially stating: same repo).

"If xisn't equivalent toy, if x is equivalent to z, then y isn't equivalent to z", which is a tautology. It's written in an informal, colloquial manner and | tried to turn it into an introduction/invitation to Lean.

However, | just can't seem to do anything... thank you very much Actually I've used Coq for 90% of the duration of the project, completed it, and then switched to Lean - doing basically the

same thing in about 750 LOC instead of >3000. I'm not turning back.

Looking forward to start using Lean for something more involved!

Z | @1

https://leanprover.zulipchat.com

The Lean Mathematical Library goes viral - 2020

2020's gest Breakthroughs in Math and Computer Science

“You can do 14 hours a day in it and not get tired and feel kind of high the
whole day,” Livingston said. “You're constantly getting positive reinforcement.”

“It will be so cool that it's worth a big-time investment now,” Macbeth said.
| “I'm investing time now so that somebody in the future can have that amazing
; experience.”

The Liquid Tensor Experiment (LTE) - 2021

Peter Scholze (Fields Medal 2018) was unsure about one of his latest results in Analytic Geometry.
The Lean community and Scholze formalized the result he was unsure about.

We thought it would take years (Scholze included).

Trust agnostic collaboration allowed us to achieve it in months. (Math Hive in action).

"The Lean Proof Assistant was really that: an assistant nature
in navigating through the thick jungle that this proof is. BRI Joi

al information v Publish with us v Subscribe

Really, one key problem | had when | was trying to find T i R
this proof was that | was essentially unable to keep all the wews e 20

objects in my RAM, and | think the same problem occurs Mathematicia.ns welcomei
when trying to read the proof. " Peter Scholze computer-assisted proofin ‘grand
r unification’ theory

> &Y
|

Abstract Formalities
Johan Commelin's talk: http://www:.fields.utoronto.ca/talks/Abstract-Formalities

Abstraction boundaries in Mathematics.

Formal mathematics as a tool for reducing the cognitive load.

Not just from raw proof complexity, but also

discrepancies between statements and proofs, side conditions, unstated assumptions, ...

2. Formalization and abstraction boundaries 2. Formalization and abstraction boundaries 2. Formalization and abstraction boundaries

2.1. Lemma statements

reducing cognitive load

Experience from LTE:

>

>

“

one key problem I had when I was trying to find this
proof was that I was essentially unable to keep all the
objects in my ‘RAM’, and I think the same problem

occurs when trying to read the proof” — Scholze

My attempts to understand the pen-and-paper proof
all failed dramatically

!l Lean really was a proof assistant

2.3

Specifications

managing refactors; unexpected gems

Experience from LTE:

la

1b

o}

w

Wrote down properties of Breen-Deligne resolutions

Discovered easier object with similar behaviour

Key statements written down without proofs

after stubbing out definitions (example: Ext)

Several definitions and lemmas were tweaked

c After the dust settled, distribute work on the proofs

Sometimes large proofs or libraries

still had to be refactored (yes, it was painful)

2.4. Large collaborations — working at the interface of different fields

This method shines when working on the interface of
different mathematical fields.

Formalization encourages clear and precise specs
which allows confident manipulation
of unfamiliar mathematics.

3

http://www.fields.utoronto.ca/talks/Abstract-Formalities

] is impacting how mathematics is done

Thomas’ Bloom result: https://b-mehta.qgithub.io/unit-fractions/

Unit fractions

by Thomas F. Bloom and Bhavik Mehta

Blueprint GitHub

What is it about?

The goal of this project is to formalize the main result of the preprint ‘On a density conjecture about
unit fractions’ using the Lean theorem prover, mainly developed at Microsoft Research by Leonardo

de Moura. This project structure is adapted from the infrastructure created by Patrick Massot for the
Sphere Eversion project.

Timothy Gowers

Very excited that Thomas Bloom and Bhavik Mehta have done this. | think
it's the first time that a serious contemporary result in "mainstream"”
mathematics doesn't have to be checked by a referee, because it has been
checked formally. Maybe the sign of things to come ... 1/

@ Kevin Buzzard

Happy to report that Bloom went on to learn Lean this year and,
together with Bhavik Mehta, has now formalised his proof in Lean b-
mehta.github.io/unit-fractions/ (including formalising the Hardy-
Littlewood circle method), finishing before he got a referee's report for
the paper ;-)

https://b-mehta.github.io/unit-fractions/

EW is impacting how mathematics is done

Sphere eversion project: https://leanprover-community.qithub.io/sphere-eversion/

The sphere eversion project

by Patrick Massot, Oliver Nash, and Floris van Doorn

Blueprint GitHub Paper

This project is a formalization of the proof of existence of sphere eversions using the Lean theorem
prover, mainly developed at Microsoft Research by Leonardo de Moura. More precisely we
formalized the full A-principle for open and ample first order differential relations, and deduce
existence of sphere eversions as a corollary.

https://leanprover-community.github.io/sphere-eversion/

EW is impacting how mathematics is done

The sphere eversion project

by Patrick Massot, Oliver Nash, and Floris van Doorn

The main motivations are:

e Demonstrating the proof assistant can handle geometric topology, and not only algebra or
abstract nonsense. Note that Fabian Immler and Yong Kiam Tan already pioneered this direction
by formalizing Poincaré-Bendixon, but this project has much larger scale.

e Exploring new infrastructure for collaborations on formalization projects, using the interactive
blueprint.

e Producing a bilingual informal/formal document by keeping the blueprint and the formalization
in sync.

2023 has been a great year for

Q

A.l. and Chatbots >

€he New Work Eimes

CanA.| Be Fooled? Testing aTutorbot ~ Chatbot PromptstoTry A.l's Literary Skills ~ What Are the Dangers of A.l.?

A.L Is Coming for Mathematics, Too

For thousands of years, mathematicians have adapted to the
latest advances in logic and reasoning. Are they ready for artificial
intelligence?

£5 Give this article

~ N

Terence Tao

@tao@mathstodon.xyz

Leo de Moura surveyed the features and use cases for Lean 4. |
knew it primarily as a formal proof assistant, but it also allows for
less intuitive applications, such as truly massive mathematical
collaborations on which individual contributions do not need to be
reviewed or trusted because they are all verified by Lean. Or to give
a precise definition of an extremely complex mathematical object,
such as a perfectoid space.

When Computers Write Proofs, What's the Point of Mathematicians?

youtube.com

2023 has been a great year for

@ Leonardo de Moura (He/Him) - You see
Senior Principal Applied Scientist at AWS, and Chief Architect ...
7 1mo - ®
I am thrilled to announce that the Mathlib (https://Inkd.in/gx6eh4aG)
port to Lean 4 has been successfully completed this weekend. It is truly
remarkable that over 1 million lines of formal mathematics have been
successfully migrated. Once again, the community has amazed me and
surpassed all my expectations. This achievement also aligns with the
10th anniversary of my initial commit to Lean on July 15, 2013. Patrick
Massot has graciously shared a delightful video commemorating this
significant milestone, which can be viewed here:
https://Inkd.in/gjVr72t8.
8 4o e W [N i]]Ren09« s

Lean 4 overview for Mathlib users - Patrick Massot

youtube.com

Leonardo de Moura (He/Him) + You ey

p 7 Senior Principal Applied Scientist at AWS, and Chief Architect ...
= 1mo-®

Ecstatic to come across the following post today! & Here is the link to

the original: https://Inkd.in/dSDFSVhS, and website:
https://Inkd.in/dB9427pU

Daniel J. Bernstein
@djb@cr.yp.to

Formally verified theorems about decoding Goppa codes:
cr.yp.to/2023/leangoppa-202307... This is using the Lean
theorem prover; I'll try formalizing the same theorems in HOL
Light for comparison. This is a step towards full verification of
fast software for the McEliece cryptosystem.

Graydon Hoare
@graydon@types.pl

| fairly often find myself in conversations with people who wish
Rust had more advanced types. And | always say it's pretty much
at its cognitive-load and compatibility induced design limit, and if
you want to go further you should try building a newer language.

And many people find this answer disappointing because starting
a language is a long hard task especially if it's to be a
sophisticated one. And so people ask for a candidate project
they might join and help instead./And my best suggestion for a
while now has been Lean 4. | think it's really about the best thing
going in terms of powerful research languages. Just a
remarkable achievement on many many axes.

Extensibility

We build with (not for) the community

Mathlib is not just math, but many Lean extensions too.

The community extends Lean using Lean itself.

We wrote Lean 4 in Lean to make sure every single part of the system is extensible.

elab "ring" : tactic => do
let g ~ getMainTarget
match g.getAppFnArgs with
| ("Eq, #[ty, ei, ez2]) =>
let ((ex', p1), (e2', pz2)) « RingM.run ty $ do (- eval ei1, « eval e:z)
if < isDefEq e1' ez2' then
let p « mkEqTrans p:1 (< mkEqSymm p:2)
ensureHasNoMvVars p
assignExprMvVar (< getMainGoal) p
replaceMainGoal []
else
throwError "failed \n{< ei'.pp}\n{- ez2'.pp}"
| => throwError "failed: not an equality"

Lean 4 is an efficient programming language

We want proof automation written by users to be very efficient.

Lean memory manager is now the Bing memory manager (Daan Leijen - RiSE).
"Functional but in Place" (FBIP) distinguished paper award at PLDI'21,

Proofs are used to optimize code too.

It is a fully extensible programming language.

There are many more surprises coming...

Lean is a language for "programming your proofs and proving your programs”

Domain Specific Languages in Lean

Extensible Parser and Hygienic Macro System

syntax "{ " ident (" : "™ term)? " // " term " }" : term
macro_rules

| “({ $x : $type // $p }) => " (Subtype (fun ($x:ident : $type) => $p))
| “({ $x // $p }) => " (Subtype (fun ($x:ident : _) => $p))

We have many different syntax categories.

syntax SEXE TG X
syntax SO Pk G
syntax SitsxXIENZE e B 5t

syntax:2 stx " <|> " stx:1l : stx

macro_rules
| “(stx] $p +) => "(stx| manyl($p))
| “(stx| $p *) => " (stx| many($p))
| “(stx] $p ?) => “(stx| optional($p))
| “(stx| $p1 <|> $p2) => ‘(stx| orelse($p1, $p2))

“do” notation : another DSL

def Poly.eval? (e : Poly) (a : Assignment) : Option Rat := Id.run do
let mut r := 0
for (c, x) in e.val do
if let some v := a.get? x then
r:=r + c*v
else
return none
return r

“do” notation : another DSL

private def congrApp (mvarId : MVarId) (lhs rhs : Expr) : MetaM (List MvarId) :=
lhs.withApp fun f args => do
let infos := (« getFunInfoNArgs f args.size).paramInfo
let mut r := { expr := f : Simp.Result }
let mut newGoals := #[]
let mut i := 0
for arg in args do
let addGoal «
if i < infos.size && !infos[i].hasFwdDeps then
pure infos[i].binderInfo.isExplicit
else
pure (« whnfD (« inferType r.expr)).isArrow
if addGoal then
let (rhs, newGoal) « mkConvGoalFor arg

newGoals := newGoals.push newGoal.mvarId!

r « Simp.mkCongr r { expr := rhs, proof? := newGoal }
else

r « Simp.mkCongrFun r arg
i:=1i+1

let proof « r.getProof
unless (« isDefEqGuarded rhs r.expr) do
throwError "invalid 'congr' conv tactic, failed to resolve{indentExpr rhs}\n=?={indentExpr r.expr}"
assignExprMVar mvarId proof
return newGoals.tolList

Tactic/synthesis framework: another DSL

Go to tactic/synthesis mode

variables {a : Type u} {B : Type v}
variables {ra : a - a - Prop} {rb : B - B - Prop}

def lexAccessible (aca : (a : a) » Acc ra a) (acb : (b : B) » Acc rb b) (a : a) (b : B) : Acc (Lex ra rb) (a, b) := by
induction (aca a) generalizing b
| intro xa aca iha =>
induction (acb b)
| intro xb acb ihb =>
apply Acc.intro (xa, xb)

intro p 1t

cases 1t

| left ai b1 a2 b2 h => apply iha a: h
| right a ba bz h => apply ihb bi h

Construct a lambda .
Construct an application

The tactic framework is implemented in Lean itself

def cases (mvarId : MVarId) (majorFVarId : FVarId) (givenNames : Array (List Name)) (useUnusedNames : Bool) : MetaM (Array CasesSubgoal) :=
withMVarContext mvarId do
checkNotAssigned mvarId ‘cases
let context? « mkCasesContext? majorFVarId
match context? with

| none => throwTacticEx “cases mvarId "not applicable to the given hypothesis"
| some ctx =>
if ctx.inductiveVal.nindices == 0 then
inductionCasesOn mvarId majorFVarId givenNames useUnusedNames ctx
else

let si1 « generalizelndices mvarId majorFVarId

trace[Meta.Tactic.cases]! "after generalizeIndices\n{MessageData.ofGoal si.mvarId}"
let sz « inductionCasesOn si.mvarId s:.fvarld givenNames useUnusedNames ctx

let s2 « elimAuxIndices si1 S2

unifyCasesEqs si.numEqgs s:

Users can add their own primitives

Challenges

Funding

Focused Research Organization (FRO)

A new type of nonprofit startup for science developed by Convergent Research.

convergentresearch.org

Large-Scale Effort

Corporation

Industrial
R&D Lab

Mid-Stage
Startup

Open-Source
Software

- CONVERGENT
{' RESEARCH

A member of the Schmidt Futures Network

Academic
Consortia

Tightly
Coordinated,
Focused Team

Produces
Public Goods,
Not Private Returns

Academic
Co-Authors

Individual
Academic
Researcher(s)

Early Startup

https://www.convergentresearch.org/

The Lean FRO

Mission: address scalability, usability, and proof automation in Lean
~7 FTEs by end of year

Supported by Simons Foundation International, Alfred P. Sloan Foundation, and
Richard Merkin

lean-fro.org

https://lean-fro.org

Questions of Scale

“Can mathlib scale to 100 times its present size, with a community 100 times its
present size and commits going in at 100 times the present rate? [...] Will the

proofs be maintained afterwards [...]?”

— Joseph Myers on Lean Zulip

https://leanprover.zulipchat.com/#narrow/stream/113488-general/topic/lots.20of.20theorems/near/378297465

Scalability

Formal mathematical objects are massive for cutting edge math.

Many different techniques.
New data-structures (e.g., Term Indexing for DTT)
New algorithms (e.g., Tabled Type Class Resolution)

Engineering (e.g., mmap)
Lean Code generator (e.g., FBIP)

Automation

A "this is obvious" proof is unacceptable in Lean.

Lean fills the gaps in user provided constructions and proofs.

The overhead factor is currently over 20.

Dependent type theory (DTT) is a rich foundation, but hard to automate.

We have more than 20 years of experience in automated theorem proving at MSR.
How to lift successful techniques from first-order logic to DTT?
Is it possible to achieve overhead factor < 1?

Usability

Several improvements and hundreds of commits. Joint work: MSR, KIT, CMU

tc.lean doc/examples/tc Ican/@ Expr.typeCheck_complete

OF © ® M x
theorem Expr.typeCheck complete {e : Expr} : e.typeCheck = .unknown - - HasType e ty := by
induction e with simp [typeCheck]
| plus a b iha ihb =>
split
next => intros; contradiction
next ra rb hnp =>
Recall that “hnp' is a hypothesis generated by the “split’ tactic
that asserts the previous case was not taken
intro h ht
cases ht with
| plus h1 hz2 => exact hnp hi hz2 (typeCheck correct h: (iha -
and a b iha ihb =>
split
next => intros;| contradiction
next ra rb hnp =>
intro h ht

hi)) (typeCheck correct

tne cases Corresponaing tO TNE CONSTructors EXRE DAl 20d hxor Dool

/ Expr.typeCheck : (e :
theorem Expr.typeCheck complete {e

Expr) - Maybe fun ty => HasType e ty
: Expr} : e.typeCheck = .unknown - - HasType e ty := by
-~

tc.lean ~/projects/leand/doc/examples - Definitions (1)

X
7ol def Expr.typeCheck (e : Expr) : {{ ty
The function 'Expr.typeCheck e' returns a type ‘ty' and a pro
or “unknown®
Recall that, ‘def Expr.typeCheck ...’ in Lean is notation for =

The term *.found .nat .nat’

the expected types

is suga

‘Maybe.found Ty.nat

def Expr.typeCheck (e
match e with
| nat .. => ,found .nat .nat
| bool .. => .found .bool .bool
| plus a b =>

: Expr) : {{ ty | HasType e ty }} := —

Lean Infoview

vtc.lean:103:19 € & 1O

¥ Tactic state Type : Type 1

ty : Ty Ty : 8
ab : Expr
iha : typeCheck a =
ihb : typeCheck [TETS SRSV
xt* : Maybe fun
xt : Maybe fun ty => HasType b ty
: HasType a Ty.bool
: HasType b Ty.bool
: typeCheck a = Maybe.found Ty.bool hit
: typeCheck b = Maybe.found Ty.bool h:at
: Maybe.found Ty.bool (_ : HasType (and a b) Ty.bool) =
Maybe.unknown
F -HasType (and a b) ty

-+ -HasType a ty
I s Type bty

» All Messages (0)]

theorem append nil :
induction as with
| nil => rfl
| cons a as ih => rw [append] rw [ih]

append as [] = as := by

theorem append_assoc : append (append as bs) cs = append as (append bs cs) := by
induction as <;> simp_all!

#check EESE]
@ append
© append_ass..
© append_nil
%3 Append

append (append as bs) cs = append as ..

Usability

Collapsible trace messages

doc > examples > = tc.lean > ©@ Expr.typeCheck_correct) v tc.lean:82:4 € = 1 v
69 | _, _ => .unknown v Tactic state Y 4
79 | and a b => case found
7i match a.typeCheck, b.typeCheck with e: Expr
72 | .found .bool hi, .found .bool h2 => .found .bool (. ty: Ty
73 | _» _ => .unknown hhah': HasType e ty
74 hz21: Maybe.found ty h' # Maybe.unknown
75 heorem Expr.typeCheck correct (h: : HasType e ty) (hz : F Maybe.found ty h' = Maybe.found ty h
76 : e.typeCheck = .found ty h := by
77 revert h: Y Wesbages)

78 cases typeCheck e with Vicean:82:4 D« @

797 | found ty' h' => [Meta.isDefEq] @ Maybe.found ty h' =?= Maybe.found ty h »

80; intro; have := HasType.det hi h'; subst this;

81/ set option trace.Meta.isDefEq true in > All Messages (3) I

2| K

83 | unknown => intros; contradiction

o4 [Meta.isDefEq] Maybe.found ty h' =?= Maybe.found ty h v

[] ty =?= ty
D@ mny HESHREISEERRR)
| @ HasType e ty =?= HasType & ty
[@ Ty == Ty
[] fun ty => HasType e ty =?= fun ty => HasType e ty

Usability

ProofWidgets > Demos > = RbTree.lean

119 catch _ => pure .blue

120 return .node color (« go 1) (« Widget.ppExprTagged a) (« go r)
121 else if empty? e then

122 return .empty

123 else

124 return .var (-~ Widget.ppExprTagged e)

325
126 @[expr_presenter]

127 def RBTree.presenter :

128 userName := "Red-b
129 present e := do
130 let some t « dra
131 | throwError "
132 return t

133

134 /-! # Example -/
135
136 open RBTree RBColour

137 example {a : Type} (x y z : a) (a b c d : RBTree a)
138 (h: =3 ewf, a=node red ew f) :

139 balance black (node red a x (node red b y c)) z d
140 node red (node black a x b) y (node black c z d) :
141 withPanelWidgets [SelectionPanel]

142 match a with

143 | .empty => simp [balancel

144 | node black .. => simp [balancel

145 | node red .. =>

146 conv => unfold balance; simp_match

147 exact False.elim <| h (_, _, _, rfl)

148

ExprPresenter where
lack tree"

wTree? e
not a tree : ("

in

by

VY RbTree.lean:147:6
¥ Tactic state

1 goal

a: Type

Xyz: a

abcdlf: _root_.RBTree a

atsia

rt: _root_.RBTree a

h: -3 ew f, node red 1t at rt

node red e w f

+ node red (node black 1+ at rt) x (node black (node red b y

ez d)i=

v Selected expressions

at b c d

v All Messages (0)
No messages.

Red-black tree v |

Language

The Lean language is rich and extensible.

Coercions

Overloaded notation

Implicit arguments

Type classes

Hygienic macros

Unification hints

Embedded domain specific languages (DSLs)
There is no spec, we are learning it with the community.
Every new gadget must have a well-defined semantics.

Engineering

Yes, there is a lot of engineering.

Cloud build system.

Package manager (Mathlib is currently a mono-repo).
Documentation generators.

Continuous Integration (Cl) for Lean and Mathlib.
Installation packages.

Diagnostic tools (essential when something goes wrong).

Machine checkable proofs and Al

Large language models are incredibly powerful, but they “hallucinate.”

m Show that there are infinitely many integers between two distinct integers.
y

To show there are infinitely many integers between two distinct integers, let's assume the
contrary and see if we reach a contradiction.

Assumption: There are a finite number of integers between two distinct integers a and b,

where a < b.

If our assumption is true, then there exists a largest integer m such that a < m < b. Now,
consider the integer m + 1. Clearly, m < m + 1 < b. This means m + 1 is another
integer between a and b, which contradicts our assumption that m was the largest integer

between a and b.

Hence, our assumption that there are a finite number of integers between two distinct

integers a and b is false.

Therefore, there are infinitely many integers between any two distinct integers a and b.

Lean enables Al for math
OpenAl - GPTf - Solving (Some) Formal Math Olympiad Problems with Lean

PROBLEM 4

Suppose a, b, c are the sides of a triangle. Prove that a®(b + c—a) + b*(c +

a—b) + c¢*(a + b—c) < 3abe

< FORMAL

(abc:R)
)y 1 @9<aAn0@<bAO<C)
1 > €<a+bh)
2t b<a+c)
a<b+c):
a*2 x(b+c-a) +b*2 % (c+a->b)
s3xaxbxc:=

+c*2x(a+b-c)

Lean enables Al for math

Meta - HyperTree Proof Search for Neural Theorem Proving

>(u File Edit Selection View Go Run Terminal Help ® basic.lean - mathlib [WSL: Ubuntu] - Visual Studio C... [D Q ED 08 - o x
basiclean 1M @ hausdorff.lean W EO-- ean Infoview
src 2 data 2 nat basic.lean > . . ¥basiclean:418:4 E = Il VUG
498 tneorem auu_pos_1TT_pos_Or_pos (mn :) I ©
409 {ff.intro VTactic state widget
410 begin S
81 2 goals filter: no filter
411 intro h,
412 cases m with m, case or.inl
413 {simp [zero_add] at h, exact or.inr h}, g mn
414 exact or.inl (succ_pos _) mp :@<m
415 end FO@<m+n
416 begin .
417} intro h, cases h with mp np, caseronzior
418 7 | m n
419 end np : @<n
420 FO@<m+n
421 lemma add_eq one_iff : V {a b : N}, a+b =
422 | o 0 1= dec_trivial Tactic suggestions with prefix:\
423 | 0 := dec_trivial apply add_pos_left mp
424 | (a+2) _ := by rw add_right_comm; exact exact add_pos_left mp n
o ad U rw [nat.add_comm]
425 | _ (b+1) := by rw [« add_assoc]; simp on apply nat.add_pos_left
426 induction n with n ih
427 theorem le_add_one_iff {1 j : N} : 1 £ j + 1 apply add_pos_left
428 (A h, induction n

1 dadte .

429 match nat.eq_or_lt_of_le h with induction n with n ihio

Lean enables Al for math

Lean Chat by Zhangir Azerbayev and Edward Ayers
available at the VS Code marketplace

Lean enables Al for math

Lean Chat by Zhangir Azerbayev and Edward Ayers
available at the VS Code marketplace

If = and g are elements of the group G, prove that |z| = |gzg|.

Lean enables Al for math

Lean Chat by Zhangir Azerbayev and Edward Ayers
available at the VS Code marketplace

If z and g are elements of the group G, prove that |z| = |g 'zg]|.

theorem order conjugate (G : Type*) [group G] (x g : G) :
order x = order (g~ * x * g) :=

=l

Lean enables Al for math

Lean Chat by Zhangir Azerbayev and Edward Ayers
available at the VS Code marketplace

If z and g are elements of the group G, prove that |z| = |g‘1:cg|.

theorem order conjugate (G : Type*) [group G] (x g : G) :
order x = order (g-! * x * g) :=

=

That's almost correct. Just replace order with order of.

Lean enables Al for math

LeanAide by Ayush Agrawal, Siddhartha Gadgil, Navin Goyal, Anand Tadipatri

M@ [

T.I
©
>
|
z
¥
@
B
P

K
; Proof tree n:N Local context
Fgednn=n I Goal
Tactic
cases n
k:N

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Fged(k+1)(k+1)=k+1

unfold ged

\ Prove theorems
\ by Interaction

Data
extraction

LeanDojo Benchmark

* 98,641 theorems and proofs Training

(unfold ged

k:N

Foged((k+1)%(k+1)(k+1)=k+1 N

* 217,639 tactics
* 129,162 premises

k:N
FgedO(k+1)=k+1

l apply ged_zero_left

4

All accessible premises
in the math library

rewrite mod_self

model

i k:N . N\
State | ged (k+1) % (k+ 1)) (k+ 1) =k + 1 Encoder-decoder >— rewrite mod_self

Tactic

theorem mod_self (n : nat) : n % n = O

theorem gcd_zero_left (x : nat) : gcd 0 x = x

33K on average

\ def ged : nat - nat -+ nat

/
'
1
1
1
1
1
1
1
1
1
| - ~
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
——'—-‘—-l, Encoder >— :
1 1 1
—'—'—-—~, L— Encoder ;) :
T theorem mod_1t (x : nmat) {y : nat} (h : 0<y) : x%hy<y '
b Maximum theorem mod_self (n : mat) : n % n =0 |
o 1
i cosine similarity theorem mod_eq_of 1t {a b : nat} (h : a<b) : a%b=a |
[theorem zero_mod (b : nat) : 0 %4 b =10 "
1 1 !
oo |
’’_'-,, | Encoder)— Retrieved premises g
, B> ’
- \\ ’

Lean + Mathlib + Al opportunities

Al Math assistants that produce machine checkable proofs.
Auto-formalization (aka machine translation): English/Informal => Formal.

Al proof/code refactoring assistants that produce machine checkable certificates.

Verified code synthesizers powered by Al.

Machine checkable proofs are built on top of extensive mathematical libraries.

Community excitement

L3 Lean 4 as a scripting language in Houdini

Tomas Skrivan

Some more fun with Hamiltonian systems:
https://www.youtube.com/watch?v=qcEShFPgYkg&ab_channel=Lecopivo

Macros in Lean are really cool, | can now annotate function arguments and automatically generate functions derivatives
and proofs of smoothness. The Hamiltonian definition for the above system is defined as:

def LennardJones (& minEnergy : R) (radius : R) (x : RA(3:N)) : R :=
let x' := 11/radius * xiI*{-6, &}
4 x minEnergy * x' x (x' 1)

argument x [Fact (&g#0)]
isSmooth, diff, hasAdjDiff, adjDiff

Auto refactoring / generalization

@ general An example of why formalization is useful

Mar 31

l Riccardo Brasca o/7cD
I really like what is going on with #12777. @Sebastian Monnet proved thatif €, F and K are fields such that
finite_dimensional F E ,then fintype (E »a[F] K) .We already have docs#field.alg_hom.fintype, that is exactly
the same statement with the additional assumption -is_separable F E .

The interesting part of the PR is that, with the new theorem, the linter will automatically flag all the theorem that can be
generalized (for free!), removing the separability assumption. | think in normal math this is very difficult to achieve, if |
generalize a 50 years old paper that assumes p # 2 to all primes, there is no way | can manually check and maybe
generalize all the papers that use the old one.

¥v3 @s

Z | 4N http://leanprover.zulipchat.com

Conclusion

| V\lis an extensible theorem prover. http://leanprover.github.io

Decentralized collaboration.

The Mathlib community will change how mathematics is done and taught.

It is not just about proving but also understanding complex objects and proofs,

getting new insights, and navigating through the "thick jungles” that are beyond our
cognitive power.

