
1 2020/07/01 Ullrich, de Moura - Beyond Notations: Hygienic Macro Expansion for Theorem Proving Languages

KIT

1KIT, Germany 2Microsoft Research, USA

Beyond Notations: Hygienic Macro Expansion for Theorem
Proving Languages

Sebastian Ullrich1, Leonardo de Moura2

KIT – The Research University in the Helmholtz Association www.kit.edu

It’s been a long time coming...

2 2020/07/01 Ullrich, de Moura - Beyond Notations: Hygienic Macro Expansion for Theorem Proving Languages

KIT

“We should really refactor the elaborator as well”

“If we rewrite the frontend, we should do that in Lean”

“We first need a capable Lean compiler for that...”

Thus the Lean 4 project was born.

What issues could be that important?

It’s been a long time coming...

2 2020/07/01 Ullrich, de Moura - Beyond Notations: Hygienic Macro Expansion for Theorem Proving Languages

KIT

“We should really refactor the elaborator as well”

“If we rewrite the frontend, we should do that in Lean”

“We first need a capable Lean compiler for that...”

Thus the Lean 4 project was born.

What issues could be that important?

It’s been a long time coming...

2 2020/07/01 Ullrich, de Moura - Beyond Notations: Hygienic Macro Expansion for Theorem Proving Languages

KIT

“We should really refactor the elaborator as well”

“If we rewrite the frontend, we should do that in Lean”

“We first need a capable Lean compiler for that...”

Thus the Lean 4 project was born.

What issues could be that important?

It’s been a long time coming...

2 2020/07/01 Ullrich, de Moura - Beyond Notations: Hygienic Macro Expansion for Theorem Proving Languages

KIT

“We should really refactor the elaborator as well”

“If we rewrite the frontend, we should do that in Lean”

“We first need a capable Lean compiler for that...”

Thus the Lean 4 project was born.

What issues could be that important?

It’s been a long time coming...

2 2020/07/01 Ullrich, de Moura - Beyond Notations: Hygienic Macro Expansion for Theorem Proving Languages

KIT

“We should really refactor the elaborator as well”

“If we rewrite the frontend, we should do that in Lean”

“We first need a capable Lean compiler for that...”

Thus the Lean 4 project was born.

What issues could be that important?

It’s been a long time coming...

2 2020/07/01 Ullrich, de Moura - Beyond Notations: Hygienic Macro Expansion for Theorem Proving Languages

KIT

“We should really refactor the elaborator as well”

“If we rewrite the frontend, we should do that in Lean”

“We first need a capable Lean compiler for that...”

Thus the Lean 4 project was born.

What issues could be that important?

Issues with existing syntax sugar systems

3 2020/07/01 Ullrich, de Moura - Beyond Notations: Hygienic Macro Expansion for Theorem Proving Languages

KIT

Restricted to term level
notation Γ `⊢` e `:` τ := Typing Γ e τ

Restricted inputs
notation `∃` binder `,` r:(scoped P, Exists P) := r

Issues with existing syntax sugar systems

3 2020/07/01 Ullrich, de Moura - Beyond Notations: Hygienic Macro Expansion for Theorem Proving Languages

KIT

Restricted to term level
notation Γ `⊢` e `:` τ := Typing Γ e τ

Restricted inputs
notation `∃` binder `,` r:(scoped P, Exists P) := r

Issues with existing syntax sugar systems

3 2020/07/01 Ullrich, de Moura - Beyond Notations: Hygienic Macro Expansion for Theorem Proving Languages

KIT

Restricted to term level
notation Γ `⊢` e `:` τ := Typing Γ e τ

Restricted inputs
notation `∃` binder `,` r:(scoped P, Exists P) := r

Notation "∃ x , P" := (exists (fun x => P)).

Issues with existing syntax sugar systems

3 2020/07/01 Ullrich, de Moura - Beyond Notations: Hygienic Macro Expansion for Theorem Proving Languages

KIT

Restricted to term level
notation Γ `⊢` e `:` τ := Typing Γ e τ

Restricted inputs
notation `∃` binder `,` r:(scoped P, Exists P) := r

Notation "\sum_ (i <- r) F" := (\big[addn/0]_(i <- r) F).
Notation "\sum_ (i <- r | P) F" := (\big[addn/0]_(i <- r | P) F).
Notation "\sum_ (m <= i < n | P) F" := (\big[addn/0]_(m <= i < n | P) F).
...
Notation "\mul_ (i <- r) F" := (\big[muln/0]_(i <- r) F).
Notation "\mul_ (i <- r | P) F" := (\big[muln/0]_(i <- r | P) F).
Notation "\mul_ (m <= i < n | P) F" := (\big[muln/0]_(m <= i < n | P) F).
...

Issues with existing syntax sugar systems

3 2020/07/01 Ullrich, de Moura - Beyond Notations: Hygienic Macro Expansion for Theorem Proving Languages

KIT

Restricted to term level
notation Γ `⊢` e `:` τ := Typing Γ e τ

Restricted inputs
notation `∃` binder `,` r:(scoped P, Exists P) := r

Low-level might exist, but separate system!
@[user_notation] meta def format_macro (_ : parse $ tk "format!") (s : string) :
parser pexpr := ...

A unified frontend system

4 2020/07/01 Ullrich, de Moura - Beyond Notations: Hygienic Macro Expansion for Theorem Proving Languages

KIT

Notations Term → Term notation "∃" b "," P => Exists (fun b => P)

⇓
Macros Surf → Surf macro "∃" b:term "," P:term : term =>

`(Exists (fun $b => $P))

⇓
Elaborators Surf → Core elab "∃" b:term "," P:term : term =>

`(Exists (fun $b => $P)) >>= elabTerm

Equal hygiene guarantees for all levels

A unified frontend system

4 2020/07/01 Ullrich, de Moura - Beyond Notations: Hygienic Macro Expansion for Theorem Proving Languages

KIT

Notations Term → Term notation "∃" b "," P => Exists (fun b => P)

⇓
Macros Surf → Surf macro "∃" b:term "," P:term : term =>

`(Exists (fun $b => $P))

⇓
Elaborators Surf → Core elab "∃" b:term "," P:term : term =>

`(Exists (fun $b => $P)) >>= elabTerm

Equal hygiene guarantees for all levels

A unified frontend system

4 2020/07/01 Ullrich, de Moura - Beyond Notations: Hygienic Macro Expansion for Theorem Proving Languages

KIT

Notations Term → Term notation "∃" b "," P => Exists (fun b => P)

⇓
Macros Surf → Surf macro "∃" b:term "," P:term : term =>

`(Exists (fun $b => $P))

⇓
Elaborators Surf → Core elab "∃" b:term "," P:term : term =>

`(Exists (fun $b => $P)) >>= elabTerm

Equal hygiene guarantees for all levels

A unified frontend system

4 2020/07/01 Ullrich, de Moura - Beyond Notations: Hygienic Macro Expansion for Theorem Proving Languages

KIT

Notations Term → Term notation "∃" b "," P => Exists (fun b => P)

⇓
Macros Surf → Surf macro "∃" b:term "," P:term : term =>

`(Exists (fun $b => $P))

⇓
Elaborators Surf → Core elab "∃" b:term "," P:term : term =>

`(Exists (fun $b => $P)) >>= elabTerm

Equal hygiene guarantees for all levels

A unified frontend system

4 2020/07/01 Ullrich, de Moura - Beyond Notations: Hygienic Macro Expansion for Theorem Proving Languages

KIT

Notations Term → Term notation "∃" b "," P => Exists (fun b => P)

⇓
Macros Surf → Surf macro "∃" b:term "," P:term : term =>

`(Exists (fun $b => $P))

⇓
Elaborators Surf → Core elab "∃" b:term "," P:term : term =>

`(Exists (fun $b => $P)) >>= elabTerm

Equal hygiene guarantees for all levels

Hygiene

5 2020/07/01 Ullrich, de Moura - Beyond Notations: Hygienic Macro Expansion for Theorem Proving Languages

KIT

notation "const" e => fun x => e

“Of course” e may not capture x

macro "elab" ... => do
...;
`(@[$elabAttr] def elabFn (stx : Syntax) : $type := match_syntax stx with ...)

“Of course” elabFn may not be captured from outside

⇒ Hygienic macros introduce scopes!

Hygiene

5 2020/07/01 Ullrich, de Moura - Beyond Notations: Hygienic Macro Expansion for Theorem Proving Languages

KIT

notation "const" e => fun x => e

“Of course” e may not capture x

macro "elab" ... => do
...;
`(@[$elabAttr] def elabFn (stx : Syntax) : $type := match_syntax stx with ...)

“Of course” elabFn may not be captured from outside

⇒ Hygienic macros introduce scopes!

Hygiene

5 2020/07/01 Ullrich, de Moura - Beyond Notations: Hygienic Macro Expansion for Theorem Proving Languages

KIT

notation "const" e => fun x => e

“Of course” e may not capture x

macro "elab" ... => do
...;
`(@[$elabAttr] def elabFn (stx : Syntax) : $type := match_syntax stx with ...)

“Of course” elabFn may not be captured from outside

⇒ Hygienic macros introduce scopes!

Hygiene system

6 2020/07/01 Ullrich, de Moura - Beyond Notations: Hygienic Macro Expansion for Theorem Proving Languages

KIT

Main inspiration: Binding as Sets of Scopes, Matthew Flatt, POPL’16

Streamlined & optimized for slightly simpler macro system:
no local macros, no mutual recursion between decls and macros In essence:
1. Remember the surrounding scope in syntax quotations

`(def elabFn{} (stx{} : Syntax{Lean.Syntax}) ...)

2. Tag names introduced by macros
def elabFn.23{} (stx.23{} : Syntax.23{Lean.Syntax}) ...

(sequences of tags become important in macro-macros!)

Both actually implemented inside the `(...) macro!

Hygiene system

6 2020/07/01 Ullrich, de Moura - Beyond Notations: Hygienic Macro Expansion for Theorem Proving Languages

KIT

Main inspiration: Binding as Sets of Scopes, Matthew Flatt, POPL’16

Streamlined & optimized for slightly simpler macro system:
no local macros, no mutual recursion between decls and macros

In essence:
1. Remember the surrounding scope in syntax quotations

`(def elabFn{} (stx{} : Syntax{Lean.Syntax}) ...)

2. Tag names introduced by macros
def elabFn.23{} (stx.23{} : Syntax.23{Lean.Syntax}) ...

(sequences of tags become important in macro-macros!)

Both actually implemented inside the `(...) macro!

Hygiene system

6 2020/07/01 Ullrich, de Moura - Beyond Notations: Hygienic Macro Expansion for Theorem Proving Languages

KIT

In essence:
1. Remember the surrounding scope in syntax quotations

`(def elabFn{} (stx{} : Syntax{Lean.Syntax}) ...)

2. Tag names introduced by macros
def elabFn.23{} (stx.23{} : Syntax.23{Lean.Syntax}) ...

(sequences of tags become important in macro-macros!)

Both actually implemented inside the `(...) macro!

Hygiene system

6 2020/07/01 Ullrich, de Moura - Beyond Notations: Hygienic Macro Expansion for Theorem Proving Languages

KIT

In essence:
1. Remember the surrounding scope in syntax quotations

`(def elabFn{} (stx{} : Syntax{Lean.Syntax}) ...)

2. Tag names introduced by macros
def elabFn.23{} (stx.23{} : Syntax.23{Lean.Syntax}) ...

(sequences of tags become important in macro-macros!)

Both actually implemented inside the `(...) macro!

Hygiene system

6 2020/07/01 Ullrich, de Moura - Beyond Notations: Hygienic Macro Expansion for Theorem Proving Languages

KIT

In essence:
1. Remember the surrounding scope in syntax quotations

`(def elabFn{} (stx{} : Syntax{Lean.Syntax}) ...)

2. Tag names introduced by macros
def elabFn.23{} (stx.23{} : Syntax.23{Lean.Syntax}) ...

(sequences of tags become important in macro-macros!)

Both actually implemented inside the `(...) macro!

Adapted name resolution

7 2020/07/01 Ullrich, de Moura - Beyond Notations: Hygienic Macro Expansion for Theorem Proving Languages

KIT

1. If tagged name is in local context, use it
... (stx.23{} : ...) := match_syntax stx.23{} ...

Implementation unchanged from basic name resolution

2. Otherwise, check global scopes and remembered names if any
Syntax.23{Lean.Syntax}

3. Otherwise fail

Adapted name resolution

7 2020/07/01 Ullrich, de Moura - Beyond Notations: Hygienic Macro Expansion for Theorem Proving Languages

KIT

1. If tagged name is in local context, use it
... (stx.23{} : ...) := match_syntax stx.23{} ...

Implementation unchanged from basic name resolution

2. Otherwise, check global scopes and remembered names if any
Syntax.23{Lean.Syntax}

3. Otherwise fail

Adapted name resolution

7 2020/07/01 Ullrich, de Moura - Beyond Notations: Hygienic Macro Expansion for Theorem Proving Languages

KIT

1. If tagged name is in local context, use it
... (stx.23{} : ...) := match_syntax stx.23{} ...

Implementation unchanged from basic name resolution

2. Otherwise, check global scopes and remembered names if any
Syntax.23{Lean.Syntax}

3. Otherwise fail

Examples: Lean 4 elaborator

8 2020/07/01 Ullrich, de Moura - Beyond Notations: Hygienic Macro Expansion for Theorem Proving Languages

KIT

syntax "if" optIdent term "then" term "else" term : term
macro_rules
| `(if $h : $cond then $t else $e) => `(dite $cond (fun $h => $t) (fun $h => $e))
| `(if $cond then $t else $e) => `(ite $cond $t $e)

Examples: Lean 4 elaborator

8 2020/07/01 Ullrich, de Moura - Beyond Notations: Hygienic Macro Expansion for Theorem Proving Languages

KIT

syntax "if" optIdent term "then" term "else" term : term
macro_rules
| `(if $h : $cond then $t else $e) => `(dite $cond (fun $h => $t) (fun $h => $e))
| `(if $cond then $t else $e) => `(ite $cond $t $e)

Examples: Lean 4 elaborator

9 2020/07/01 Ullrich, de Moura - Beyond Notations: Hygienic Macro Expansion for Theorem Proving Languages

KIT

term ::= ...|⟨term, ..., term⟩

Γ ⊢ τ ≡ I p c is single constructor of I Γ ⊢ c t ⇐ τ ⇝ t′

Γ ⊢ ⟨t⟩ ⇐ τ ⇝ t′

elab "⟨" args:(sepBy term ", ") "⟩" : term <= τ => do
τ ← whnf τ;
match τ.getAppFn with
| Expr.const I _ _ => do

ctors ← getCtors I;
match ctors with
| [c] => do
stx ← `($(mkCTermId c) $(getSepElems args.getArgs)*);
elabTerm stx τ

... -- error handling

Examples: Lean 4 elaborator

9 2020/07/01 Ullrich, de Moura - Beyond Notations: Hygienic Macro Expansion for Theorem Proving Languages

KIT

term ::= ...|⟨term, ..., term⟩

Γ ⊢ τ ≡ I p c is single constructor of I Γ ⊢ c t ⇐ τ ⇝ t′

Γ ⊢ ⟨t⟩ ⇐ τ ⇝ t′

elab "⟨" args:(sepBy term ", ") "⟩" : term <= τ => do
τ ← whnf τ;
match τ.getAppFn with
| Expr.const I _ _ => do

ctors ← getCtors I;
match ctors with
| [c] => do
stx ← `($(mkCTermId c) $(getSepElems args.getArgs)*);
elabTerm stx τ

... -- error handling

Examples: Lean 4 elaborator

9 2020/07/01 Ullrich, de Moura - Beyond Notations: Hygienic Macro Expansion for Theorem Proving Languages

KIT

term ::= ...|⟨term, ..., term⟩

Γ ⊢ τ ≡ I p c is single constructor of I Γ ⊢ c t ⇐ τ ⇝ t′

Γ ⊢ ⟨t⟩ ⇐ τ ⇝ t′

elab "⟨" args:(sepBy term ", ") "⟩" : term <= τ => do
τ ← whnf τ;
match τ.getAppFn with
| Expr.const I _ _ => do
ctors ← getCtors I;
match ctors with
| [c] => do
stx ← `($(mkCTermId c) $(getSepElems args.getArgs)*);
elabTerm stx τ

... -- error handling

Examples: Lean 4 elaborator

9 2020/07/01 Ullrich, de Moura - Beyond Notations: Hygienic Macro Expansion for Theorem Proving Languages

KIT

term ::= ...|⟨term, ..., term⟩

Γ ⊢ τ ≡ I p c is single constructor of I Γ ⊢ c t ⇐ τ ⇝ t′

Γ ⊢ ⟨t⟩ ⇐ τ ⇝ t′

elab "⟨" args:(sepBy term ", ") "⟩" : term <= τ => do
τ ← whnf τ;
match τ.getAppFn with
| Expr.const I _ _ => do
ctors ← getCtors I;
match ctors with
| [c] => do
stx ← `($(mkCTermId c) $(getSepElems args.getArgs)*);
elabTerm stx τ

... -- error handling

Examples: Lean 4 elaborator

9 2020/07/01 Ullrich, de Moura - Beyond Notations: Hygienic Macro Expansion for Theorem Proving Languages

KIT

term ::= ...|⟨term, ..., term⟩

Γ ⊢ τ ≡ I p c is single constructor of I Γ ⊢ c t ⇐ τ ⇝ t′

Γ ⊢ ⟨t⟩ ⇐ τ ⇝ t′

elab "⟨" args:(sepBy term ", ") "⟩" : term <= τ => do
τ ← whnf τ;
match τ.getAppFn with
| Expr.const I _ _ => do
ctors ← getCtors I;
match ctors with
| [c] => do
stx ← `($(mkCTermId c) $(getSepElems args.getArgs)*);
elabTerm stx τ

... -- error handling

Examples: Lean 4 elaborator

9 2020/07/01 Ullrich, de Moura - Beyond Notations: Hygienic Macro Expansion for Theorem Proving Languages

KIT

term ::= ...|⟨term, ..., term⟩

Γ ⊢ τ ≡ I p c is single constructor of I Γ ⊢ c t ⇐ τ ⇝ t′

Γ ⊢ ⟨t⟩ ⇐ τ ⇝ t′

elab "⟨" args:(sepBy term ", ") "⟩" : term <= τ => do
τ ← whnf τ;
match τ.getAppFn with
| Expr.const I _ _ => do
ctors ← getCtors I;
match ctors with
| [c] => do
stx ← `($(mkCTermId c) $(getSepElems args.getArgs)*);
elabTerm stx τ

... -- error handling

Examples: Lean 4 elaborator

9 2020/07/01 Ullrich, de Moura - Beyond Notations: Hygienic Macro Expansion for Theorem Proving Languages

KIT

term ::= ...|⟨term, ..., term⟩

Γ ⊢ τ ≡ I p c is single constructor of I Γ ⊢ c t ⇐ τ ⇝ t′

Γ ⊢ ⟨t⟩ ⇐ τ ⇝ t′

elab "⟨" args:(sepBy term ", ") "⟩" : term <= τ => do
τ ← whnf τ;
match τ.getAppFn with
| Expr.const I _ _ => do
ctors ← getCtors I;
match ctors with
| [c] => do
stx ← `($(mkCTermId c) $(getSepElems args.getArgs)*);
elabTerm stx τ

... -- error handling

Examples: simple web server

10 2020/07/01 Ullrich, de Moura - Beyond Notations: Hygienic Macro Expansion for Theorem Proving Languages

KIT

import Webserver

GET / => redirect "/greet/stranger"

GET /greet/{name} => write
<html>
<h1>Hello, {name}!</h1>

</html>

def main : IO Unit := do
hIn ← IO.stdin;
hOut ← IO.stdout;
Webserver.run hIn hOut

https://leanprover.github.io/talks/PLDI20

https://leanprover.github.io/talks/PLDI20

Examples: simple web server

10 2020/07/01 Ullrich, de Moura - Beyond Notations: Hygienic Macro Expansion for Theorem Proving Languages

KIT

import Webserver

GET / => redirect "/greet/stranger"

GET /greet/{name} => write
<html>
<h1>Hello, {name}!</h1>

</html>

def main : IO Unit := do
hIn ← IO.stdin;
hOut ← IO.stdout;
Webserver.run hIn hOut

https://leanprover.github.io/talks/PLDI20

https://leanprover.github.io/talks/PLDI20

Tactic Hygiene

11 2020/07/01 Ullrich, de Moura - Beyond Notations: Hygienic Macro Expansion for Theorem Proving Languages

KIT

Lean 3 helper for proving injectivity of constructors:
def mk_inj_eq : tactic unit :=
`[intros, apply propext, apply iff.intro, ...]

Passable because no-one would ever redefine iff.intro ... right?

namespace hott
...
@[hott] def iff.intro : ...
...
inductive ... -- breaks!

Tactic Hygiene

11 2020/07/01 Ullrich, de Moura - Beyond Notations: Hygienic Macro Expansion for Theorem Proving Languages

KIT

Lean 3 helper for proving injectivity of constructors:
def mk_inj_eq : tactic unit :=
`[intros, apply propext, apply iff.intro, ...]

Passable because no-one would ever redefine iff.intro ... right?

namespace hott
...
@[hott] def iff.intro : ...
...
inductive ... -- breaks!

Tactic Hygiene

11 2020/07/01 Ullrich, de Moura - Beyond Notations: Hygienic Macro Expansion for Theorem Proving Languages

KIT

Lean 3 helper for proving injectivity of constructors:
def mk_inj_eq : tactic unit :=
`[intros, apply propext, apply iff.intro, ...]

Passable because no-one would ever redefine iff.intro ... right?

namespace hott
...
@[hott] def iff.intro : ...
...
inductive ... -- breaks!

Tactic Hygiene

12 2020/07/01 Ullrich, de Moura - Beyond Notations: Hygienic Macro Expansion for Theorem Proving Languages

KIT

Lean 4:
macro mkInjEq : tactic =>
`(intros; apply propext; apply Iff.intro; ...)

Tactic macros expanded on the fly by a new tactic interpreter
Same hygiene guarantees as with other macros

macro introH : tactic => `(intro h)
lemma ... by introH; exact h -- breaks!

macro introH : tactic => `(intro $(mkIdent `h))
lemma ... by introH; exact h -- works!

Tactic Hygiene

12 2020/07/01 Ullrich, de Moura - Beyond Notations: Hygienic Macro Expansion for Theorem Proving Languages

KIT

Lean 4:
macro mkInjEq : tactic =>
`(intros; apply propext; apply Iff.intro; ...)

Tactic macros expanded on the fly by a new tactic interpreter
Same hygiene guarantees as with other macros

macro introH : tactic => `(intro h)
lemma ... by introH; exact h -- breaks!

macro introH : tactic => `(intro $(mkIdent `h))
lemma ... by introH; exact h -- works!

Tactic Hygiene

12 2020/07/01 Ullrich, de Moura - Beyond Notations: Hygienic Macro Expansion for Theorem Proving Languages

KIT

Lean 4:
macro mkInjEq : tactic =>
`(intros; apply propext; apply Iff.intro; ...)

Tactic macros expanded on the fly by a new tactic interpreter
Same hygiene guarantees as with other macros

macro introH : tactic => `(intro h)
lemma ... by introH; exact h -- breaks!

macro introH : tactic => `(intro $(mkIdent `h))
lemma ... by introH; exact h -- works!

Conclusion

13 2020/07/01 Ullrich, de Moura - Beyond Notations: Hygienic Macro Expansion for Theorem Proving Languages

KIT

A tower of abstractions from notations down to elaborators
A simple, non-invasive but effective macro hygiene system
The first hygienic tactic system of its kind

Thank you!

Conclusion

13 2020/07/01 Ullrich, de Moura - Beyond Notations: Hygienic Macro Expansion for Theorem Proving Languages

KIT

A tower of abstractions from notations down to elaborators
A simple, non-invasive but effective macro hygiene system
The first hygienic tactic system of its kind

Thank you!

