
1 2018/12/12 Ullrich, de Moura - Towards Lean 4:
An Optimized Object Model for an Interactive Theorem Prover

KIT

1Karlsruhe Institute of Technology, Germany 2Microsoft Research, USA

Towards Lean 4:
An Optimized Object Model for an Interactive Theorem Prover

Sebastian Ullrich1, Leonardo de Moura2

KIT – The Research University in the Helmholtz Association www.kit.edu



The Lean theorem prover

2 2018/12/12 Ullrich, de Moura - Towards Lean 4:
An Optimized Object Model for an Interactive Theorem Prover

KIT

dependently-typed proof assistant
small trusted kernel
also a purely functional, eager programming language

inductive list (α : Type u)

| nil : list

| cons : α → list → list

def map (f : α → β) : list α → list β

| [] := []

| (x :: xs') := f x :: map xs'

https://leanprover.github.io

https://leanprover.github.io


A brief history of Lean

3 2018/12/12 Ullrich, de Moura - Towards Lean 4:
An Optimized Object Model for an Interactive Theorem Prover

KIT

Lean 0.1 (2014)
Lean 2 (2015)

first official release
fixed tactic language

Lean 3 (2017)
make Lean a meta-programming language: build tactics in Lean
backed by a bytecode interpreter

Lean 4 (201X)
make Lean a general-purpose language: native back end, FFI, ...
reimplement Lean in Lean



Lean 3 backend

4 2018/12/12 Ullrich, de Moura - Towards Lean 4:
An Optimized Object Model for an Interactive Theorem Prover

KIT

elaborator

kernel

term

compiler

C++ code extraction

IR

interpreter

bytecode

LLVM backend?

IR

term

tactic execution



Lean 4 backend

4 2018/12/12 Ullrich, de Moura - Towards Lean 4:
An Optimized Object Model for an Interactive Theorem Prover

KIT

elaborator

kernel

term

compiler

C++ code extraction

IR

interpreter

bytecode

LLVM backend?

IR

term

tactic execution



Lean 3 object model

5 2018/12/12 Ullrich, de Moura - Towards Lean 4:
An Optimized Object Model for an Interactive Theorem Prover

KIT

Uniform model: every value is a tagged pointer representing one of
a 31-bit number
a reference to a ref-counted VM object

a constructor value
a closure
an arbitrary-precision integer
any C++ object derived from vm_external



Lean 3 constructor object

6 2018/12/12 Ullrich, de Moura - Towards Lean 4:
An Optimized Object Model for an Interactive Theorem Prover

KIT

4 bytes reference counter
1 byte object kind
4 bytes constructor index
4 bytes #fields

4/8 bytes field #0
... ...



Lessons from Lean 3’s model

7 2018/12/12 Ullrich, de Moura - Towards Lean 4:
An Optimized Object Model for an Interactive Theorem Prover

KIT

Originally only intended for single-threaded code
=⇒ no need for atomic RC!

Eventually needed to move objects between threads
=⇒ fall back to deep-copying...
Every object is a C++ smart pointer
=⇒ simple to use, but no way to optimize RC ops
Core types like name and expr are not VM objects
=⇒ need to be wrapped in vm_external for every operation



Lessons from Lean 3’s model

7 2018/12/12 Ullrich, de Moura - Towards Lean 4:
An Optimized Object Model for an Interactive Theorem Prover

KIT

Originally only intended for single-threaded code
=⇒ no need for atomic RC!
Eventually needed to move objects between threads
=⇒ fall back to deep-copying...

Every object is a C++ smart pointer
=⇒ simple to use, but no way to optimize RC ops
Core types like name and expr are not VM objects
=⇒ need to be wrapped in vm_external for every operation



Lessons from Lean 3’s model

7 2018/12/12 Ullrich, de Moura - Towards Lean 4:
An Optimized Object Model for an Interactive Theorem Prover

KIT

Originally only intended for single-threaded code
=⇒ no need for atomic RC!
Eventually needed to move objects between threads
=⇒ fall back to deep-copying...
Every object is a C++ smart pointer
=⇒ simple to use, but no way to optimize RC ops

Core types like name and expr are not VM objects
=⇒ need to be wrapped in vm_external for every operation



Lessons from Lean 3’s model

7 2018/12/12 Ullrich, de Moura - Towards Lean 4:
An Optimized Object Model for an Interactive Theorem Prover

KIT

Originally only intended for single-threaded code
=⇒ no need for atomic RC!
Eventually needed to move objects between threads
=⇒ fall back to deep-copying...
Every object is a C++ smart pointer
=⇒ simple to use, but no way to optimize RC ops
Core types like name and expr are not VM objects
=⇒ need to be wrapped in vm_external for every operation



Lean 4 object model

8 2018/12/12 Ullrich, de Moura - Towards Lean 4:
An Optimized Object Model for an Interactive Theorem Prover

KIT

Non-uniform model: in the lowest IR, each value has one of the types
int8/uint8/.../uint64: unboxed primitive value
_obj: tagged pointer to a VM object

a constructor, closure, or bigint
an array of boxed or unboxed values
a thunk



Lean 4 constructor object

9 2018/12/12 Ullrich, de Moura - Towards Lean 4:
An Optimized Object Model for an Interactive Theorem Prover

KIT

1 byte object kind
1 byte memory kind

2 bytes constructor index
2 bytes #boxed fields
2 bytes #unboxed bytes

4/8 bytes boxed field #0
... ...

X bytes unboxed field #0
... ...

All boxed fields come first =⇒ free can still be implemented uniformly



Memory kind

10 2018/12/12 Ullrich, de Moura - Towards Lean 4:
An Optimized Object Model for an Interactive Theorem Prover

KIT

single-threaded: non-atomic RC
the default for heap allocations

multi-threaded: atomic RC
threading primitives upgrade object graphs crossing threads to this kind
everything is immutable =⇒ ST object never reachable from MT object

stack: no RC
region: no RC



The case for ref counting

11 2018/12/12 Ullrich, de Moura - Towards Lean 4:
An Optimized Object Model for an Interactive Theorem Prover

KIT

writing a good GC is really hard
“The biggest challenge is implementing the garbage collector.”

– Multicore OCaml website1

easier to use from other languages
everything is immutable =⇒ no cycles!
explicit ref count =⇒ can do destructive updates on RC = 1

like linear types, but checked dynamically
dependent types are hard enough
more precise (but also less predictable)

1http://ocamllabs.io/doc/multicore.html

http://ocamllabs.io/doc/multicore.html


The case for ref counting

11 2018/12/12 Ullrich, de Moura - Towards Lean 4:
An Optimized Object Model for an Interactive Theorem Prover

KIT

writing a good GC is really hard
“The biggest challenge is implementing the garbage collector.”

– Multicore OCaml website1

easier to use from other languages

everything is immutable =⇒ no cycles!
explicit ref count =⇒ can do destructive updates on RC = 1

like linear types, but checked dynamically
dependent types are hard enough
more precise (but also less predictable)

1http://ocamllabs.io/doc/multicore.html

http://ocamllabs.io/doc/multicore.html


The case for ref counting

11 2018/12/12 Ullrich, de Moura - Towards Lean 4:
An Optimized Object Model for an Interactive Theorem Prover

KIT

writing a good GC is really hard
“The biggest challenge is implementing the garbage collector.”

– Multicore OCaml website1

easier to use from other languages
everything is immutable =⇒ no cycles!

explicit ref count =⇒ can do destructive updates on RC = 1
like linear types, but checked dynamically

dependent types are hard enough
more precise (but also less predictable)

1http://ocamllabs.io/doc/multicore.html

http://ocamllabs.io/doc/multicore.html


The case for ref counting

11 2018/12/12 Ullrich, de Moura - Towards Lean 4:
An Optimized Object Model for an Interactive Theorem Prover

KIT

writing a good GC is really hard
“The biggest challenge is implementing the garbage collector.”

– Multicore OCaml website1

easier to use from other languages
everything is immutable =⇒ no cycles!
explicit ref count =⇒ can do destructive updates on RC = 1

like linear types, but checked dynamically
dependent types are hard enough
more precise (but also less predictable)

1http://ocamllabs.io/doc/multicore.html

http://ocamllabs.io/doc/multicore.html


Dynamic linearity

12 2018/12/12 Ullrich, de Moura - Towards Lean 4:
An Optimized Object Model for an Interactive Theorem Prover

KIT

def map (f : α → β) : list α → list β

| [] := []

| (x :: xs') := f x :: map xs'

[compiler.llnf]

λ (f xs : _obj),

list.cases_on xs

(let _x_1 : _obj := _dec f

in _cnstr.0)

(let _x_1 : _obj := _proj.0 xs,

_x_2 : _obj := _inc _x_1,

_x_3 : _obj := _proj.1 xs,

_x_4 : _obj := _inc _x_3,

_x_5 : _obj := _reset.2 xs,

_x_6 : _obj := _apply f _x_2,

_x_7 : _obj := list.map f _x_4

in _reuse.1 _x_5 _x_6 _x_7)

_reset / _reuse check for linearity at runtime
=⇒ unique prefix of a list will be reused even if remainder is shared!



Dynamic linearity

12 2018/12/12 Ullrich, de Moura - Towards Lean 4:
An Optimized Object Model for an Interactive Theorem Prover

KIT

def map (f : α → β) : list α → list β

| [] := []

| (x :: xs') := f x :: map xs'

[compiler.llnf]

λ (f xs : _obj),

list.cases_on xs

(let _x_1 : _obj := _dec f

in _cnstr.0)

(let _x_1 : _obj := _proj.0 xs,

_x_2 : _obj := _inc _x_1,

_x_3 : _obj := _proj.1 xs,

_x_4 : _obj := _inc _x_3,

_x_5 : _obj := _reset.2 xs,

_x_6 : _obj := _apply f _x_2,

_x_7 : _obj := list.map f _x_4

in _reuse.1 _x_5 _x_6 _x_7)

_reset / _reuse check for linearity at runtime
=⇒ unique prefix of a list will be reused even if remainder is shared!



Dynamic linearity

13 2018/12/12 Ullrich, de Moura - Towards Lean 4:
An Optimized Object Model for an Interactive Theorem Prover

KIT

Benchmarks of direct C++ implementations of

list.map (+1) (list.range 4000)

optimizations run time of map

no reuse 214.3 µs
_reset / _reuse 27.7 µs

optimized reuse 12.3 µs
known unique 10.7 µs



Borrowing

14 2018/12/12 Ullrich, de Moura - Towards Lean 4:
An Optimized Object Model for an Interactive Theorem Prover

KIT

def length : @borrowed (list α) → nat

| [] := 0

| (x :: xs') := length xs' + 1

[compiler.llnf]

λ (xs : _obj),

list.cases_on xs

0

(let _x_1 : _obj := _proj.1 xs,

_x_2 : _obj := length _x_1,

in nat.add _x_2 1)

The @borrowed attribute
delays/avoids RC operations:

no inc/dec when passing an argument to a borrow parameter
inc when returning/passing a borrowed value to a non-borrow parameter

but prevents linear updates



Regions: minimizing startup time

15 2018/12/12 Ullrich, de Moura - Towards Lean 4:
An Optimized Object Model for an Interactive Theorem Prover

KIT

Lean 3 startup does not scale well: deserializing all dependencies can take
significant time and memory

Compare with Isabelle: dependencies can be compiled into a single ML heap
image

but at most one heap can be loaded
still needs to be read from disk eagerly
fragile: heaps cannot be created from an IDE session (at the moment)

What if we could just mmap (multiple!) regions of objects into memory?

lazy loading and prefetching provided by the OS
proofs aren’t needed usually

everything immutable
=⇒ pages can even be shared by multiple Lean processes

careful: must not touch RC



Regions: minimizing startup time

15 2018/12/12 Ullrich, de Moura - Towards Lean 4:
An Optimized Object Model for an Interactive Theorem Prover

KIT

Lean 3 startup does not scale well: deserializing all dependencies can take
significant time and memory

Compare with Isabelle: dependencies can be compiled into a single ML heap
image

but at most one heap can be loaded
still needs to be read from disk eagerly
fragile: heaps cannot be created from an IDE session (at the moment)

What if we could just mmap (multiple!) regions of objects into memory?

lazy loading and prefetching provided by the OS
proofs aren’t needed usually

everything immutable
=⇒ pages can even be shared by multiple Lean processes

careful: must not touch RC



Regions: minimizing startup time

15 2018/12/12 Ullrich, de Moura - Towards Lean 4:
An Optimized Object Model for an Interactive Theorem Prover

KIT

Lean 3 startup does not scale well: deserializing all dependencies can take
significant time and memory

Compare with Isabelle: dependencies can be compiled into a single ML heap
image

but at most one heap can be loaded

still needs to be read from disk eagerly
fragile: heaps cannot be created from an IDE session (at the moment)

What if we could just mmap (multiple!) regions of objects into memory?

lazy loading and prefetching provided by the OS
proofs aren’t needed usually

everything immutable
=⇒ pages can even be shared by multiple Lean processes

careful: must not touch RC



Regions: minimizing startup time

15 2018/12/12 Ullrich, de Moura - Towards Lean 4:
An Optimized Object Model for an Interactive Theorem Prover

KIT

Lean 3 startup does not scale well: deserializing all dependencies can take
significant time and memory

Compare with Isabelle: dependencies can be compiled into a single ML heap
image

but at most one heap can be loaded
still needs to be read from disk eagerly

fragile: heaps cannot be created from an IDE session (at the moment)

What if we could just mmap (multiple!) regions of objects into memory?

lazy loading and prefetching provided by the OS
proofs aren’t needed usually

everything immutable
=⇒ pages can even be shared by multiple Lean processes

careful: must not touch RC



Regions: minimizing startup time

15 2018/12/12 Ullrich, de Moura - Towards Lean 4:
An Optimized Object Model for an Interactive Theorem Prover

KIT

Lean 3 startup does not scale well: deserializing all dependencies can take
significant time and memory

Compare with Isabelle: dependencies can be compiled into a single ML heap
image

but at most one heap can be loaded
still needs to be read from disk eagerly
fragile: heaps cannot be created from an IDE session (at the moment)

What if we could just mmap (multiple!) regions of objects into memory?

lazy loading and prefetching provided by the OS
proofs aren’t needed usually

everything immutable
=⇒ pages can even be shared by multiple Lean processes

careful: must not touch RC



Regions: minimizing startup time

15 2018/12/12 Ullrich, de Moura - Towards Lean 4:
An Optimized Object Model for an Interactive Theorem Prover

KIT

Lean 3 startup does not scale well: deserializing all dependencies can take
significant time and memory

Compare with Isabelle: dependencies can be compiled into a single ML heap
image

but at most one heap can be loaded
still needs to be read from disk eagerly
fragile: heaps cannot be created from an IDE session (at the moment)

What if we could just mmap (multiple!) regions of objects into memory?

lazy loading and prefetching provided by the OS
proofs aren’t needed usually

everything immutable
=⇒ pages can even be shared by multiple Lean processes

careful: must not touch RC



Regions: minimizing startup time

15 2018/12/12 Ullrich, de Moura - Towards Lean 4:
An Optimized Object Model for an Interactive Theorem Prover

KIT

Lean 3 startup does not scale well: deserializing all dependencies can take
significant time and memory

Compare with Isabelle: dependencies can be compiled into a single ML heap
image

but at most one heap can be loaded
still needs to be read from disk eagerly
fragile: heaps cannot be created from an IDE session (at the moment)

What if we could just mmap (multiple!) regions of objects into memory?
lazy loading and prefetching provided by the OS

proofs aren’t needed usually

everything immutable
=⇒ pages can even be shared by multiple Lean processes

careful: must not touch RC



Regions: minimizing startup time

15 2018/12/12 Ullrich, de Moura - Towards Lean 4:
An Optimized Object Model for an Interactive Theorem Prover

KIT

Lean 3 startup does not scale well: deserializing all dependencies can take
significant time and memory

Compare with Isabelle: dependencies can be compiled into a single ML heap
image

but at most one heap can be loaded
still needs to be read from disk eagerly
fragile: heaps cannot be created from an IDE session (at the moment)

What if we could just mmap (multiple!) regions of objects into memory?
lazy loading and prefetching provided by the OS

proofs aren’t needed usually
everything immutable
=⇒ pages can even be shared by multiple Lean processes

careful: must not touch RC



Regions: minimizing startup time

16 2018/12/12 Ullrich, de Moura - Towards Lean 4:
An Optimized Object Model for an Interactive Theorem Prover

KIT

We’re investigating two approaches:

Simple approach: use relative pointers in region objects
introduces branch for retrieving unboxed field

Advanced approach: try to mmap each region to its original address
on collision: fall back to eager loading and pointer patching
probability of a single collision between 100 dependencies of size 10 MB in
48-bit address space is ~0.018%

In either approach, writing objects to disk does need some transformations



Regions: minimizing startup time

16 2018/12/12 Ullrich, de Moura - Towards Lean 4:
An Optimized Object Model for an Interactive Theorem Prover

KIT

We’re investigating two approaches:

Simple approach: use relative pointers in region objects
introduces branch for retrieving unboxed field

Advanced approach: try to mmap each region to its original address
on collision: fall back to eager loading and pointer patching
probability of a single collision between 100 dependencies of size 10 MB in
48-bit address space is ~0.018%

In either approach, writing objects to disk does need some transformations



Regions: minimizing startup time

16 2018/12/12 Ullrich, de Moura - Towards Lean 4:
An Optimized Object Model for an Interactive Theorem Prover

KIT

We’re investigating two approaches:

Simple approach: use relative pointers in region objects
introduces branch for retrieving unboxed field

Advanced approach: try to mmap each region to its original address
on collision: fall back to eager loading and pointer patching
probability of a single collision between 100 dependencies of size 10 MB in
48-bit address space is ~0.018%

In either approach, writing objects to disk does need some transformations



Regions: minimizing startup time

17 2018/12/12 Ullrich, de Moura - Towards Lean 4:
An Optimized Object Model for an Interactive Theorem Prover

KIT

For regions to work, all state to be serialized must be Lean objects

Unboxed fields now make it feasible to reimplement core types as Lean
objects!

expr mk_const(name const & n, levels const & ls) {

expr r(mk_cnstr(static_cast<unsigned>(expr_kind::Const), n, ls, expr_scalar_size(expr_kind::Const)));

set_scalar<expr_kind::Const>(r, hash(n.hash(), hash(ls)), false, has_mvar(ls), false, has_param(ls));

return r;

}

Unboxed metadata is at the end of the object
=⇒ can be hidden in the Lean definition

inductive expr

| const : name → list level → expr

| ...



Regions: minimizing startup time

17 2018/12/12 Ullrich, de Moura - Towards Lean 4:
An Optimized Object Model for an Interactive Theorem Prover

KIT

For regions to work, all state to be serialized must be Lean objects

Unboxed fields now make it feasible to reimplement core types as Lean
objects!

expr mk_const(name const & n, levels const & ls) {

expr r(mk_cnstr(static_cast<unsigned>(expr_kind::Const), n, ls, expr_scalar_size(expr_kind::Const)));

set_scalar<expr_kind::Const>(r, hash(n.hash(), hash(ls)), false, has_mvar(ls), false, has_param(ls));

return r;

}

Unboxed metadata is at the end of the object
=⇒ can be hidden in the Lean definition

inductive expr

| const : name → list level → expr

| ...



Regions: minimizing startup time

17 2018/12/12 Ullrich, de Moura - Towards Lean 4:
An Optimized Object Model for an Interactive Theorem Prover

KIT

For regions to work, all state to be serialized must be Lean objects

Unboxed fields now make it feasible to reimplement core types as Lean
objects!

expr mk_const(name const & n, levels const & ls) {

expr r(mk_cnstr(static_cast<unsigned>(expr_kind::Const), n, ls, expr_scalar_size(expr_kind::Const)));

set_scalar<expr_kind::Const>(r, hash(n.hash(), hash(ls)), false, has_mvar(ls), false, has_param(ls));

return r;

}

Unboxed metadata is at the end of the object
=⇒ can be hidden in the Lean definition

inductive expr

| const : name → list level → expr

| ...



Implementation status

18 2018/12/12 Ullrich, de Moura - Towards Lean 4:
An Optimized Object Model for an Interactive Theorem Prover

KIT

object model runtime in C++
core types ported to model
optimizing compiler from Core Lean to LLNF

inlining, specialization, simplification
using join-point representation

compiler from LLNF to old bytecode format
model used by backends and built-ins
writing and loading regions
multi-threading
borrowing



Conclusion

19 2018/12/12 Ullrich, de Moura - Towards Lean 4:
An Optimized Object Model for an Interactive Theorem Prover

KIT

A new object model customized to the needs of a theorem prover
utilizing properties of an eager, purely functional language
designed to avoid allocations during startup and at run time

Thank you!



Conclusion

19 2018/12/12 Ullrich, de Moura - Towards Lean 4:
An Optimized Object Model for an Interactive Theorem Prover

KIT

A new object model customized to the needs of a theorem prover
utilizing properties of an eager, purely functional language
designed to avoid allocations during startup and at run time

Thank you!


