Monthly Community Meeting

Lean FRO
13 October 2023

Focused Research Organization (FRO)

A new type of nonprofit startup for science developed by Convergent Research.

convergentresearch.org

Large-Scale Effort

Corporation

Industrial
R&D Lab

Mid-Stage
Startup

Open-Source
Software

- CONVERGENT
{' RESEARCH

A member of the Schmidt Futures Network

Academic
Consortia

Tightly
Coordinated,
Focused Team

Produces
Public Goods,
Not Private Returns

Academic
Co-Authors

Individual
Academic
Researcher(s)

Early Startup

https://www.convergentresearch.org/

The Lean FRO

Missions:

e Address scalability, usability, and proof automation in Lean.
e Support formal mathematics.
e Achieve self-sustainability in 5 years.

~7 FTEs by end of year

Supported by Simons Foundation International, Alfred P. Sloan Foundation,
and Richard Merkin

lean-fro.org

https://lean-fro.org

The Lean FRO serves the Lean community

Mathematics S()_f’Fware Education
Verification

Software
Development

Al

The Lean FRO: team

Leo de Moura (AWS) Sebastian Ullrich Joachim Breitner David Thrane Christiansen

Chief Architect, Co-Founder Head of Engineering, Co-Founder Senior Research Software Engineer Senior Research Software Engineer

_ 4

Joe Hendrix Marc Huisinga Mac Malone Scott Morrison

Principal Research Software Engineer Research Software Engineer Research Software Engineer Senior Research Software Engineer

The Lean FRO: team responsibilities

e Leo (Chief Architect): technical direction, management, backend.

e Sebastian (Head of Engineering): management, frontend.

e Joachim Breitner: backend.

e David Christiansen: documentation tools, documentation, outreach, frontend.
e Joe Hendrix: management, standard library, sledgehammer.

e Marc Huisinga: language server, VS Code plugin.

e Mac Malone: Lake, frontend.

e Scott Morrison: Mathlib & Lean, standard library, Al ambassador, proof automation.

Backend = kernel, compiler, proof automation.

Frontend = parser, macro system, elaborator.

Development philosophy: ownership model

e Each file/model has a clear owner that is responsible for raising the bar.

o Code is properly documented & tested.

o Merging PRs that affect the module.

e Owner must be a Lean FRO employee.
e Long-term goal: transfer the ownership of many existing files.

e Challenge: we need more tests and benchmarks.

RFC & Pull requests

https://github.com/leanprover/lean4/blob/master/doc/contributions.md

e Before You Submit a Pull Request, Start with an Issue.

o User Experience: How does this feature improve the user experience?
o Beneficiaries: Which Lean users and projects do benefit most from this feature/change?
o Community Feedback: Have you sought feedback or insights from other Lean users?

o Maintainability: Will this change streamline code maintenance or simplify its structure?

e Quality over Quantity.

e Coding Standards.

https://github.com/leanprover/lean4/blob/master/doc/contributions.md

RFC & Pull requests

e Reviews and Feedback:

o Be Patient: Given the limited number of full-time maintainers and the volume of PRs, reviews take
some time.

o Engage Constructively: Always approach feedback positively and constructively.

o Continuous Integration: Ensure that all Cl checks pass on your PR. Failed checks delay the

review process.

e \What to Expect:

o Not All PRs Get Merged: While we appreciate every contribution, not all PRs will be merged.
o Feedback is a Gift: It helps improve the project and can also help you grow as a developer.
o Community Involvement: Engage with the Lean community on our communication channels. This

can lead to better collaboration and understanding of the project's direction.

From Achievements to Aspirations:
A Glimpse of Our Journey and Horizon

Issues will be addressed

& leanprover /lean4 ' Pubiic

<> Code

() Issues 356

Q is:issue is:open

i1 Pull requests

(® 356 Open + 761 Closed

66

) Discussions

© simp regressions probably related to transparency m
#2670 opened 18 hours ago by PatrickMassot

© simp unfolding let even with zeta := false option m
#2669 opened 18 hours ago by PatrickMassot O 1 task done

©® simp [*] regression CT)

#2668 opened 19 hours ago by PatrickMassot O 1 task done

(® Actions

3 Projects 6

Author ~

© RFC: @[flat] annotation for names in the extend clause of a structure
#2666 opened yesterday by eric-wieser

© RFC: lake update reorders the manifest

#2664 opened yesterday by semorrison

@ Security

Label »

L\ Notifications

|~ Insights

© Labels 51

Projects ~

% Fork 251

c° Milestones 3

Milestones ~

Y7 Star 2.8k

Assignee v

Sort »

P

We know the Mathlib community desperately needs many issues fixed.
= O leanprover | leand

<> Code (©) Issues 355 i1 Pullrequests 68
Filters v | Q is:issue is:open label:"Mathlib4 high prio" © Labels 51 P Milestones 3 m
Clear current search query, filters, and sorts

O ® 70pen v 13Closed Author ~ Label ~ Projects ~ Milestones ~ Assignee ~ Sort

U © RFC: autocompletion of imports server (-] s

#2655 opened 2 days ago by semorrison

U © RFC: change variable inclusion mechanism QELLLLELNEY « postponed o3
#2452 opened on Aug 24 by sgouezel

0 © RFC: tweak structure instance elaboration to avoid un-needed eta expansion (UL Ll R0 . iy
#2451 opened on Aug 24 by mattrobball

U O ridiculously long instance names (A0 [} 16
#2343 opened on Jul 22 by kbuzzard O 1 task done

0 O elaboration of ~ shouldn't try to put the arguments in the same type QUL A0 11 e
#2220 opened on May 20 by fpvandoorn

O © Ignoring default value for field warning) QUL 01

#2178 opened on Apr 1 by gebner

U © Equation lemmas are longer generated by a simple match (LN 1
#2042 opened on Jan 18 by eric-wieser O 1 task done

Lean releases

e Monthly stable releases with release candidates
o Mathlib tracks release candidates (currently v4.2.0-rc1)
o nightly-testing branch on Mathlib tracks Lean nightlies

e Lean PRs generate their own toolchain
o leanprover/lean4-pr-releases:pr-release-NNNN
o and automatically test Mathlib against this on a lean-pr-testing-NNNN branch
o If your PR breaks Mathlib, please try to fix it, or ask for help!

We have our own servers now!!!

speed.lean-lang.org
loogle.lean-lang.org

live.lean-lang.orqg

reservoir.lean-lang.org

New domain name: lean-lang.org

http://speed.lean-lang.org/
https://loogle.lean-fro.org/
http://live.lean-lang.org
http://reservoir.lean-lang.org
http://lean-lang.org

& > C & loogle.lean-lang.org h % » 0O o Finish update

Loogle!

#find

Try these

¢ Real.sin

e Real.sin, tsum

e Real.sin (_ + 2*Real.pi)

e List.replicate (_ + _) _

e Real.sqrt ?a * Real.sqrt ?a

Documentation

This website gives access to mathlib’s #find command:

The #find command finds definitions and lemmas in various ways. One can search by: the constants involved in the type; a substring of the name; a
subexpression of the type; or a subexpression located in the return type or a hypothesis specifically. All of these search methods can be combined in a single
query, comma-separated.

1. By constant:
#find Real.sin

finds all lemmas whose statement somehow mentions the sine function.

2. By lemma name substring:

#find "differ"

& > C @& livelean-lang.org/#code=inductive%20Palindrome%20%3A%20List%20a%20->%20Prop%20where%0A%20%20%7C%20nil%20%20.. ¢ Y %N 0O Q Finish update :

L IWN =

1 inductive Palindrome : List a - Prop where . ——
2] | nit : PATRUTERS [J ¥ LeanProject.lean:16:22 = 110
3 | single : (a : a) - Palindrome [a] ¥ Tactic state € I Y
4 | sandwich : (a : a) - Palindrome as - Palindrome ([a] ++ as ++ [a]) ¥ case sandwich

5

6 theorem palindrome_reverse (h : Palindrome as) : Palindrome as.reverse := by :’:;;;I;YPE;SII‘;T

7 induction h with a:at '

8 | nil => exact Palindrome.nil | h : Palindrome ast

9 | single a => exact Palindrome.single a ih : List.reverse ast = ast

10 | sandwich a h ih => simp; exact Palindrome.sandwich _ ih I List.reverse ([a] ++ ast ++ [a]) = [a] ++ ast ++ [a]
11

12 theorem reverse_eq_of_palindrome (h : Palindrome as) : as.reverse = as := by ¥ Messages (1)

13| induction h with ¥ LeanProject.lean:16:15 D € &
14| | nil => rfl

15| | single a => rfl unused variable ‘h’ [linter.unusedVariables]

16| | sandwich a h ih => simp [ih]

17 » All Messages (1) I

18 example (h : Palindrome as) : Palindrome as.reverse := by
19 simp [reverse_eq_of_palindrome h, h]

20

21 def List.last : (as : List a) » as # [] » «
22 | [al, _=a

23 | _::az2:: as, _ => (a:::as).last (by simp)

24

lean4checker

Lean is a general programming language, with powerful metaprogramming.
You can use metaprogramming to corrupt the whole system.

The new lean4checker tool allows easy reverification of files or libraries.

In Mathlib Cl now!

We must to port Lean 3 external checkers to Lean 4!

lean4checker

Lean is a general programming language, with powerful metaprogramming.

You can use metaprogramming to corrupt the whole system.

The new lean4checker tool allows easy reverification of files or libraries.
In Mathlib Cl now!

We must to port Lean 3 external checkers to Lean 4!

Mario just released Lean4Lean last night!!!

VS Code Extension Progress - Project Commands

Creating projects: Standalone (" lake new’) & Mathlib (" lake new math’)
Opening projects: Local & Remote (via "git clone’)

Managing projects: "lake build’, "lake clean’, "lake exe cache get’
and "lake update <...>"

Choose a dependency to update

>Lean 4: Project: I

Lean 4: Project: Build Project &

mathlib @ master https:/github.com/leanprover-community/mathlib4.git Lean 4: Project: Clean Project
Current: 7f01c99 = New: f182837 Lean 4: Project: Create Mathlib Project...

Lean 4: Project: Create Standalone Project...
Lean 4: Project: Download Project...

Lean 4: Project: Fetch Mathlib Build Cache
Lean 4: Project: Open Local Project...

Lean 4: Project: Update Dependency...

VS Code Extension Progress - Command Menu

New Project... >
Open Project... >
Server: Restart File Ctri+Shift+X
Server: Restart Server

Infoview: Toggle Infoview Ctrl+Shift+Enter
Troubleshooting: Show Output

Version Management... p

Project: Build Project Project Actions... >

Project: Clean Project)
Documentation... ?

Project: Update Dependency...

Project: Fetch Mathlib Build Cache

Lean 4 Setup

Getting started with Lean 4 on Linux

(] Re-Open Setup Guide

@ Books and Documentation

Learn using Lean 4 with the resources on the right.

O 1nstall Required Dependencies

O Install Lean Version Manager

Set Up Lean 4 Project

O Questions and Troubleshooting

W Mark Done

VS Code Extension Progress - Walkthrough

Books

If you want to learn Lean 4, choose one of the following introductory books based on your background. If you are getting stuck or
have any questions, click on the 'Questions and Troubleshooting' step at the bottom on the left side.

Functional Programming in Lean
The standard introduction for using Lean 4 as a general-purpose programming language.

The Mechanics of Proof
An introduction to Lean 4 as an interactive theorem prover for anyone who also wants to learn how to write rigorous

mathematical proofs.

Mathematics in Lean
The standard introduction to Lean 4 as an interactive theorem prover for users with a mathematics background.

Theorem Proving in Lean 4
The standard reference for using Lean 4 as an interactive theorem prover. Suited as an introduction for users with a computer
science background, advanced users and for general use as a reference manual.

Once you have completed one of these books and its exercises, you are ready to use Lean 4 for your own projects. If you want to use

Lean 4 both as a general-purpose programming language and an interactive theorem prover, it is recommended to read both

Functional Programming in Lean and Theorem Proving in Lean 4.

Hands-On Tutorial

If you want to dive right into using Lean 4 to prove elementary theorems about natural numbers, you can play the Natural Number
Game. It can be played online using your browser without a local installation.

Additional Resources

Website
Lean's website links to learning resources, publications, talks and articles about Lean.

Lean Community
The Lean Community website links to several other helpful learning resources not listed here and provides an introduction to mathlib,

Lean's math library.

Manual
The Lean Manual documents several features of Lean 4 and can be consulted for some of the more technical details concerning Lean.

VS Code Extension Progress - Walkthrough

Project Creation

Getting started with Lean 4 on Linux If you want to create a new project, click on one of the following:
e (Create a new standalone project

Standalone projects do not depend on any other Lean 4 projects. Dependencies can be added by modifying 'lakefile.lean’ in the
newly created project as described here.

o Re-Open Setup Guide

@ Books and Documentation e Create a new mathlib project
Mathlib projects depend on mathlib, the math library of Lean 4.

@ 1nstall Required Dependencies
If you want to open an existing project, click on one of the following:

@ Install Lean Version Manager e Download an existing project

e Open an existing local project

@ Sset Up Lean 4 Project

After creating or downloading a project, you can open it in the future by clicking the v-symbol in the top right, choosing 'Open
Set up a Lean 4 project by clicking on one of the options on the right. X . . .
Project...' > 'Open Local Project...' and selecting the project you created.

Complex Project Setups

D Questions and Troubleshooting

SNGHED Using its build system and package manager Lake, Lean 4 supports more complex project setups than the ones described above. You
ark Done
’ can find out more about Lake in the Lean 4 GitHub repository.

VS Code Extension Progress - Other

e Lean client startup progress bar
(no confusion while waiting for yellow bars to appear!)
e Better command output for troubleshooting purposes
e Cancellable external commands
e Opt-in for automatically building dependencies when opening files

Full list with more details on Zulip after the community meeting.

PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL PORTS GITLENS

/home /mhuisi/Projects/NewMathlibProject> lake exe cache get @ Checking Mathlib build artifact cache (Details): Downloaded: 3815
No fil to d load .

B fasriie So1b FHieGS file(s) [attempted 3815/3815 = 100%] (100% success)

unpacked in 14511 ms
/home /mhuisi/Projects/NewMathlibProject> lake build

sl 5 : 5 Source: lean4 (Extension) Cancel
[1/3] Building NewMathlibProject.Basic
[2/3] Building NewMathlibProject

Basic.lean 1, U X

I 1 import NewMathlibProject.Foo

! 2 Imports are out of date and must be rebuilt; use the "Restart File" command in your editor.

Plans - VS Code Extension

Short term plans:

e Fix race conditions in abbreviations that lead to inconsistent behavior
e Detect possibly outdated or broken setups and inform users about it

Rough long term plans:

e Add multi-toolchain single-folder workspace support
e Re-evaluate Live Share support after Sebastian's elaboration rework
e Use updated Lean 4 extension syntax highlighting on GitHub

Plans - Language Server

Short term plans:

e Add import auto-completion
e Improve find-references & auto-completion
e Implement call hierarchy

Rough long term plans:

Integrate more code actions into core
Make language server more extensible
Improve tactic auto-completion

[
o
[
e Improve trace browsing

Lake

e There a have been a number of fixes, touch-ups, feature additions, and
performance improvements to Lake since the launch of the FRO

e Some highlights:

o lake update <pkg> and improved 'lake update’ error messages
o Overhauled "1ake env’ that works without a lake configuration

o Better '1lake new/init’ that provides a multi-file directory structure for libraries, fixes some
previous bugs in naming, and uses the elan toolchain for the Lean version

o Cache output file hashes and the elaborated configuration to improve performance

o Lake is now part of doc-gen4’s core documentation

Lake Startup Time

A number of performance improvements landed for Lake since Lean v4.0.0.
Cumulatively, these make for a ~4-6x speedup in Lake startup time for mathlib.

$ hyperfine "lake-v4 build cache" "lake-nightly build cache" -w3 # no-op build
Benchmark 1: lake-v4 build cache
Time (mean % 0): 963.9 ms £t 3.7 ms [User: 762.0 ms, System: 271.0 ms]
Range (min ... max): 957.4 ms ... 967.3 ms 10 runs

macOS

Benchmark 2: lake-nightly build cache
Time (mean % 0): 158.7 ms + 3.3 ms [User: 94.1 ms, System: 183.2 ms]
Range (min ... max): 155.6 ms ... 168.4 ms 18 runs

Summary
'lake-nightly build cache' ran
6.07 + 0.13 times faster than 'lake-v4 build cache'

Lake Startup Time

A number of performance improvements landed for Lake since Lean v4.0.0.
Cumulatively, these make for a ~4-6x speedup in Lake startup time for mathlib.

ﬁ $ hyperfine "lake-v4 build cache" "lake-nightly build cache" -w3 # no-op build

S | Benchmark 1: lake-v4 build cache

g Time (mean * 0): 3.113 s + 0.034 s [User: 2.263 s, System: 0.865 s]
Range (min ... max): 3.063 s ... 3.156 s 10 runs

Benchmark 2: lake-nightly build cache
Time (mean * 0): 714.6 ms £ 12.3 ms [User: 300.6 ms, System: 428.8 ms]

Range (min ... max): 697.8 ms ... 734.2 ms 10 runs

Summary .’
'lake-nightly build cache' ran .'

4.36 + 0.09 times faster than 'lake-v4 build cache'

Cache Get Speed

For lake exe cache get’, this translates to an overall ~2x no-op speedup,
since the "cache’ program itself has not had as many performance improvements.

gg $ hyperfine "lake-v4 exe cache get" "lake-nightly exe cache get" -w3 # no-op get

S | Benchmark 1: lake-v4 exe cache get

S Time (mean % 0): 1.447 s £+ 0.024 s [User: 1.121 s, System: 1.259 s]
Range (min ... max): 1.420 s ... 1.502 s 10 runs

Benchmark 2: lake-nightly exe cache get
Time (mean % 0): 638.5 ms + 12.2 ms [User: 454.8 ms, System: 1.128 s]
Range (min ... max): 622.4 ms ... 663.5 ms 10 runs

Summary
'lake-nightly exe cache' get ran
2.27 + 0.06 times faster than 'lake-v4 exe cache get'

Cache Get Speed

For lake exe cache get', this translates to an overall ~2x no-op speedup,
since the "cache’ program itself has not had as many performance improvements.

Windows

$ hyperfine "lake-v4 exe cache get" "lake-nightly exe cache get" -w3 # no-op get
Benchmark 1: lake-v4 exe cache get
Time (mean * 0): 5.121 s + 0.127 s [User: 3.416 s, System: 2.401 s]
Range (min ... max): 5.008 s ... 5.402 s 10 runs
Benchmark 2: lake-nightly exe cache get
Time (mean * 0): 2.682 s + 0.016 s [User: 1.455 s, System: 1.890 s]
Range (min ... max): 2.662 s ... 2.709 s 10 runs
Summary

'lake-nightly lake exe cache get' ran ==

1.91 + 0.05 times faster than 'lake-v4 exe cache get'

Cloud Builds for Al

e Qur goalis to provide a general service for caching cloud builds that can
meet the needs of both mathlib and other packages within the ecosystem
(e.g., Kevin’s FLT project, LeanlInfer, FFls, etc.)

e To do this effectively, Lean & Lake need a package index that can store
metadata about packages and provide a online portal from which to distribute
cloud builds.

e Thus, for this reason and others, we sought to create a package repository for
Lean and Lake.

- ReserVOil.‘ All Packages =

Rese rvolr Lake's package repository
Q

e crates.io for Lean/Lake

o for LaTeX lovers, CTAN

Latest Lean Toolchain:

leanprover/lean4:v4.2.0-rc1 Wi GetSturted with Lean

Reservoir indexes, builds, and tests packages within the Lean and Lake ecosystem.

e searchable package index

e includes a ecosystem-wide
testbed which will build, test, and
check the compatibility of popular
packages with the latest Lean @ Scilean > © lean-codespace > © NNG4 >
toolchain(s)

Most Popular Newly Created Recently Updated

‘ ® mathlib4 > © LeanGccBackend > @ CS22-Lean-2023 >

@ leand-metaprogramming-book > @ leandchecker > @ HausdorffSchoolLean »
@ std4 > @® mathlib4_with_Leaninfer > @ rinha >
© leand-raytracer > @ regensburg-itp-school-2023 » © mathlib4 >

@ aesop > @ ProjectiveSpace_lean4 > @ leand-unicode-basic >

https://crates.io/
https://www.ctan.org/

Package Pages

e as development progresses,
individual package pages will
provide more Lean/Lake-specific
information than GitHub can
provide

e syntax highlighting is also further
tunable for Lean

e if you have any suggestions on
what you would like to see here,
please share them!

. Reservoir Q. Airsdags =

mathlibs

The math library of Lean 4

Readme

mathlibs
sens)

This is a complete port of mathlib to Lean 4. Development of mathlib now takes place in this
repository.

Mathlib is a user maintained library for the Lean theorem prover. It contains both programming
infrastructure and mathematics, as well as tactics that use the former and allow to develop the
latter.

Installation

You can find detailed instructions to install Lean, mathlib, and supporting tools on our website.
Experimenting

Got everything installed? Why not start with the tutorial project?

For more pointers, see Learning Lean.

Documentation

38 Apache 2.0
@ 6days ago
% 345 stars

Lean

@ v4.2.0-rc1

Homepage

#A leanprover-community.git...
Repository

©) leanprover-community/ma...

Some Near-Term Plans

Reservoir

e Store testbed builds in Reservoir cloud storage and fetch them with Lake
e Add data on a package’s dependency tree to Reservoir
e Test packages across multiple toolchains, run external checkers

Lake

Make more package configuration data available in the Lake manifest
Intelligent toolchain versioning on "lake update” (lake#180)

Proper support for C FFls which depend on the C++ stdlib

Support for shared external libraries

https://github.com/leanprover/lake/issues/180

Elaboration Performance Plans

Done: significant improvements to reduction, defeq, server performance
Short-term: incremental execution of tactic blocks
Mid-term: file-level parallelism, of theorems and much more

Long-term: module system, to define abstract interfaces of files and cut down on
rebuilds

Parser Plans

#lang Lean.Language.Programming
#lang Lean.Language.Math
#lang Lean.Doc.Manual

e Extensibility: new dialects.

e Education: use simplified subset.

e DSLs: domain specific languages.

e Modularity: allows you explicitly state the subset/dialect.

Reserved tokens per syntactic category.

Documentation Tooling - Plans and Dreams

e No documentation tool works well for everyone - bloggers, textbook authors,
paper authors, and package doc writers have different but related needs

e Plan: documentation as DSL in Lean

o Library of re-usable documentation components (code samples, embedded maths, section
headers, figures, ...)

o Export to single HTML page, multi-page online book, epub, various journals' LaTeX, etc
o Doc components in Lean packages like any other

o Convenient syntax, mostly-Markdown-compatible

LeanManual.lean

#lang Lean.Doc.Manual

@import Lean.Doc.ExampleCode

@about
title: The Lean Manual
author:
- One person
- You too?

Downloading and Installing Lean

There are two recommended ways to get Lean:
* Install the [VS Code extensionl(https://...) and then open a Lean file
* [Install ‘elan‘](https://...), the commandline Lean toolchain management tool

Using Lean
Defining Functions

@open Lean.Doc.Examples
@example_context defuns

A function definition looks like this:
@example defuns (keep := false)
def even : Nat - Bool
| 0 => true
| n+ 1 =>not (even n)

It could have also been written like this:
@example defuns (keep := true)
def even (n : Nat) : Bool :=
match n with
| 0 => true
| n* + 1 => not (even n')

Use #1ang to select the right syntax
for the file on the first line and import
the right libraries

Lean provides highlighting to the
editor, and all the usual features still
work

This code example library allows
provisional examples that aren't in
scope in subsequent examples

LeanManual.lean

#lang Lean.Doc.Manual

@import Lean.Doc.ExampleCode

@about
title: The Lean Manual
author:
- One person
- You too?

ean.Doc.Header.Section
T . - get Lean:
A section header. Section headers (https://...) and then open a Lean file

are rendered relative to the : .
current document's placement in the commandline Lean toolchain management tool

the final document, and will
| accordingly end up as chapters,

e Hovers will work as usual for custom syntax

DCTITTITTG T UMCCTIUNTS

#ﬂmloading and Installing Lean

*

@open Lean.Doc.Examples
@example_context defuns

A function definition looks like this:
@example defuns (keep := false)
def even : Nat - Bool
| 0 => true
| n+ 1 =>not (even n)

It could have also been written like this:
@example defuns (keep := true)
def even (n : Nat) : Bool :=
match n with
| 0 => true
| n* + 1 =>not (even n')

LeanManual.lean > # Downloading and ...

#lang Lean.Doc.Manual

@import Lean.Doc.ExampleCode

@about
title: The Lean Manual
author:
- One person
- You too?

Downloading and Installing Lean

There are two recommended ways to get Lean:
Install the [VS Code extension](https://...) and then open a Lean file
»GO to Definition ...), the commandline Lean toolchain management tool RIght-ClICk menu

Go to Declaration
Go to Type Declaration
Go to References

#U
Code actions for changing between list
[|Change to Numbered List

Change to Description List Sty|eS

@open Lean.Doc.Examples
@example_context defuns

A function definition looks like this:
@example defuns (keep := false)
def even : Nat - Bool
| 0 => true
| n+ 1 =>not (even n)

It could have also been written like this:
@example defuns (keep := true)
def even (n : Nat) : Bool :=
match n with
| 0 => true
| n* + 1 =>not (even n')

LeanManual.lean > # Using Lean > ## Defining Functions > @example

#lang Lean.Doc.Manual

@import Lean.Doc.ExampleCode

@about
title: The Lean Manual
author:
- One person
- You too?

Downloading and Installing Lean

There are two recommended ways to get Lean:
* Install the [VS Code extension](https://...) and then open a Lean file
* [Install ‘elan‘](https://...), the commandline Lean toolchain management tool

Using Lean

¥ LeanManual.lean:28:22
V¥ Expected type
n:Nat
@open Lean.Doc.Examples - Bool

@example_context defuns

Defining Functions

A function definition looks like this:
@example defuns (keep := false)
def even : Nat - Bool
| 0 => true
| n+1=>not (een n)

It could have also been written like this:

@example defuns (keep := true)
def even (n : Nat) : Bool :=
match n with
| 0 => true
| n* + 1 =>not (even n')

This code examples library invokes the
elaborator in the usual way, so all interactive
editing features can work as usual in the
embedded examples

Documentation Tooling - Plans and Dreams

e Other goals:
o Integrate nicely with docstrings, doc-gen4, etc
o Support all existing documentation - port FPIiL and the manual ASAP

o Integrate with playgrounds, editors, and other tools

e Current status: design sketches, feasibility studies

e Please send your feedback and interesting use cases to david@Iean-fro.org
or say "hi" on Zulip

mailto:david@lean-fro.org

ML and Lean

Lean is an ideal framework for developing ML reasoning

P
LLMs trained on: e autoformalization
e Mathlib + all Lean on github . g:gg]: Stops
e leanprover.zulipchat.com Lean
e all of mathematics! < , <
e RL from Lean feedback o &,
e remaining goals

L4 errors

Machine Learning and Lean

e \We want tactic suggestion tools (LeanInfer, LLMStep, ...) for all users.
e Smoothing the path for outside ML groups to “solve math” using Lean.

e We'd like to see reusable ML components for
o Premise selection
o Tactic suggestion
o Proof search
o Auto-formalization
e New features in the Lean REPL targeting ML users:
o experimental tactic mode
o pickling REPL states for distributed use

e Data extraction tools at lean-training-data.

https://github.com/semorrison/lean-training-data

What about?

e Compiler: more people joining soon.
e Sledgehammer for Lean: Yes, it is on our roadmap.
e Efficient kernel reduction: Joachim is starting next month ;)

Social media

< Lean
98 posts

Lean FRO
FOI IOW US @ |9y Lean @leanprover - 12h I_Z{VN S

Thrilled to see Lean mentioned in this Quanta article.

w-®
Sofia Rodrigues and Gabrielle de Oliveira used Lean 4

in a backend performance contest. They got 4th
place! ...see more

Twitter
LinkedIn
Mastodon

Logical

Propo

Proof. . N :
= L 5 ;':’onensv) _\
o(d) :

Q M s Q 43 i 612 b

=N Lean @leanprover - Oct 10 oe
We're happy to announce live.lean-lang.org, the official online playground
for Lean 4 + std/mathlib hosted by the Lean FRO and based on
github.com/leanprover-com... by Alexander Bentkamp and Jon Eugster.
Many thanks to Alex for helping with the setup!

4% Marc Huisinga has joined the Lean FRO today! Marc is one of the creators of
the Lean language server as well as the author of Static Uniqueness Analysis for Overcoming Challenges and Crafting in the

il T R e Se/p Uncharted Territory of Lean4

blog.codeminer42.com « 9 min read

Q&A

