
Monthly Community Meeting
Lean FRO

13 October 2023

Focused Research Organization (FRO)
A new type of nonprofit startup for science developed by Convergent Research.

convergentresearch.org

https://www.convergentresearch.org/

The Lean FRO
Missions:

● Address scalability, usability, and proof automation in Lean.
● Support formal mathematics.
● Achieve self-sustainability in 5 years.

~7 FTEs by end of year

Supported by Simons Foundation International, Alfred P. Sloan Foundation,
and Richard Merkin

lean-fro.org

https://lean-fro.org

The Lean FRO serves the Lean community

Mathematics Software
Verification Education AI

Software
Development

The Lean FRO: team

The Lean FRO: team responsibilities

● Leo (Chief Architect): technical direction, management, backend.

● Sebastian (Head of Engineering): management, frontend.

● Joachim Breitner: backend.

● David Christiansen: documentation tools, documentation, outreach, frontend.

● Joe Hendrix: management, standard library, sledgehammer.

● Marc Huisinga: language server, VS Code plugin.

● Mac Malone: Lake, frontend.

● Scott Morrison: Mathlib & Lean, standard library, AI ambassador, proof automation.

Backend = kernel, compiler, proof automation.

Frontend = parser, macro system, elaborator.

Development philosophy: ownership model

● Each file/model has a clear owner that is responsible for raising the bar.

○ Code is properly documented & tested.

○ Merging PRs that affect the module.

● Owner must be a Lean FRO employee.

● Long-term goal: transfer the ownership of many existing files.

● Challenge: we need more tests and benchmarks.

RFC & Pull requests

● https://github.com/leanprover/lean4/blob/master/doc/contributions.md

● Before You Submit a Pull Request, Start with an Issue.
○ User Experience: How does this feature improve the user experience?

○ Beneficiaries: Which Lean users and projects do benefit most from this feature/change?

○ Community Feedback: Have you sought feedback or insights from other Lean users?

○ Maintainability: Will this change streamline code maintenance or simplify its structure?

● Quality over Quantity.

● Coding Standards.

https://github.com/leanprover/lean4/blob/master/doc/contributions.md

RFC & Pull requests

● Reviews and Feedback:
○ Be Patient: Given the limited number of full-time maintainers and the volume of PRs, reviews take

some time.

○ Engage Constructively: Always approach feedback positively and constructively.

○ Continuous Integration: Ensure that all CI checks pass on your PR. Failed checks delay the

review process.

● What to Expect:
○ Not All PRs Get Merged: While we appreciate every contribution, not all PRs will be merged.

○ Feedback is a Gift: It helps improve the project and can also help you grow as a developer.

○ Community Involvement: Engage with the Lean community on our communication channels. This

can lead to better collaboration and understanding of the project's direction.

From Achievements to Aspirations:
A Glimpse of Our Journey and Horizon

Issues will be addressed

We know the Mathlib community desperately needs many issues fixed.

Lean releases

● Monthly stable releases with release candidates
○ Mathlib tracks release candidates (currently v4.2.0-rc1)
○ nightly-testing branch on Mathlib tracks Lean nightlies

● Lean PRs generate their own toolchain
○ leanprover/lean4-pr-releases:pr-release-NNNN
○ and automatically test Mathlib against this on a lean-pr-testing-NNNN branch
○ If your PR breaks Mathlib, please try to fix it, or ask for help!

We have our own servers now!!!

speed.lean-lang.org

loogle.lean-lang.org

live.lean-lang.org

reservoir.lean-lang.org

New domain name: lean-lang.org

http://speed.lean-lang.org/
https://loogle.lean-fro.org/
http://live.lean-lang.org
http://reservoir.lean-lang.org
http://lean-lang.org

lean4checker

Lean is a general programming language, with powerful metaprogramming.
You can use metaprogramming to corrupt the whole system.

The new lean4checker tool allows easy reverification of files or libraries.

In Mathlib CI now!

We must to port Lean 3 external checkers to Lean 4!

lean4checker

Lean is a general programming language, with powerful metaprogramming.
You can use metaprogramming to corrupt the whole system.

The new lean4checker tool allows easy reverification of files or libraries.

In Mathlib CI now!

We must to port Lean 3 external checkers to Lean 4!

Mario just released Lean4Lean last night!!!

VS Code Extension Progress - Project Commands

Creating projects: Standalone (`lake new`) & Mathlib (`lake new math`)

Opening projects: Local & Remote (via `git clone`)

Managing projects: `lake build`, `lake clean`, `lake exe cache get`
and `lake update <...>`

VS Code Extension Progress - Command Menu

VS Code Extension Progress - Walkthrough

VS Code Extension Progress - Walkthrough

VS Code Extension Progress - Other

● Lean client startup progress bar
(no confusion while waiting for yellow bars to appear!)

● Better command output for troubleshooting purposes
● Cancellable external commands
● Opt-in for automatically building dependencies when opening files

Full list with more details on Zulip after the community meeting.

Plans - VS Code Extension

Short term plans:

● Fix race conditions in abbreviations that lead to inconsistent behavior
● Detect possibly outdated or broken setups and inform users about it

Rough long term plans:

● Add multi-toolchain single-folder workspace support
● Re-evaluate Live Share support after Sebastian's elaboration rework
● Use updated Lean 4 extension syntax highlighting on GitHub

Plans - Language Server

Short term plans:

● Add import auto-completion
● Improve find-references & auto-completion
● Implement call hierarchy

Rough long term plans:

● Integrate more code actions into core
● Make language server more extensible
● Improve tactic auto-completion
● Improve trace browsing

Lake

● There a have been a number of fixes, touch-ups, feature additions, and
performance improvements to Lake since the launch of the FRO

● Some highlights:

○ `lake update <pkg>` and improved `lake update` error messages

○ Overhauled `lake env` that works without a lake configuration

○ Better `lake new/init` that provides a multi-file directory structure for libraries, fixes some
previous bugs in naming, and uses the elan toolchain for the Lean version

○ Cache output file hashes and the elaborated configuration to improve performance

○ Lake is now part of doc-gen4’s core documentation

Lake Startup Time

A number of performance improvements landed for Lake since Lean v4.0.0.
Cumulatively, these make for a ~4-6x speedup in Lake startup time for mathlib.

$ hyperfine "lake-v4 build cache" "lake-nightly build cache" -w3 # no-op build
Benchmark 1: lake-v4 build cache
 Time (mean ± σ): 963.9 ms ± 3.7 ms [User: 762.0 ms, System: 271.0 ms]
 Range (min … max): 957.4 ms … 967.3 ms 10 runs

Benchmark 2: lake-nightly build cache
 Time (mean ± σ): 158.7 ms ± 3.3 ms [User: 94.1 ms, System: 183.2 ms]
 Range (min … max): 155.6 ms … 168.4 ms 18 runs

Summary
 'lake-nightly build cache' ran
 6.07 ± 0.13 times faster than 'lake-v4 build cache'

m
ac

O
S

Lake Startup Time

A number of performance improvements landed for Lake since Lean v4.0.0.
Cumulatively, these make for a ~4-6x speedup in Lake startup time for mathlib.

$ hyperfine "lake-v4 build cache" "lake-nightly build cache" -w3 # no-op build
Benchmark 1: lake-v4 build cache
 Time (mean ± σ): 3.113 s ± 0.034 s [User: 2.263 s, System: 0.865 s]
 Range (min … max): 3.063 s … 3.156 s 10 runs

Benchmark 2: lake-nightly build cache
 Time (mean ± σ): 714.6 ms ± 12.3 ms [User: 300.6 ms, System: 428.8 ms]
 Range (min … max): 697.8 ms … 734.2 ms 10 runs

Summary
 'lake-nightly build cache' ran
 4.36 ± 0.09 times faster than 'lake-v4 build cache'

W
in

do
w

s

Cache Get Speed

For `lake exe cache get`, this translates to an overall ~2x no-op speedup,
since the `cache` program itself has not had as many performance improvements.

$ hyperfine "lake-v4 exe cache get" "lake-nightly exe cache get" -w3 # no-op get
Benchmark 1: lake-v4 exe cache get
 Time (mean ± σ): 1.447 s ± 0.024 s [User: 1.121 s, System: 1.259 s]
 Range (min … max): 1.420 s … 1.502 s 10 runs

Benchmark 2: lake-nightly exe cache get
 Time (mean ± σ): 638.5 ms ± 12.2 ms [User: 454.8 ms, System: 1.128 s]
 Range (min … max): 622.4 ms … 663.5 ms 10 runs

Summary
 'lake-nightly exe cache' get ran
 2.27 ± 0.06 times faster than 'lake-v4 exe cache get'

m
ac

O
S

Cache Get Speed

For `lake exe cache get`, this translates to an overall ~2x no-op speedup,
since the `cache` program itself has not had as many performance improvements.

$ hyperfine "lake-v4 exe cache get" "lake-nightly exe cache get" -w3 # no-op get
Benchmark 1: lake-v4 exe cache get
 Time (mean ± σ): 5.121 s ± 0.127 s [User: 3.416 s, System: 2.401 s]
 Range (min … max): 5.008 s … 5.402 s 10 runs

Benchmark 2: lake-nightly exe cache get
 Time (mean ± σ): 2.682 s ± 0.016 s [User: 1.455 s, System: 1.890 s]
 Range (min … max): 2.662 s … 2.709 s 10 runs

Summary
 'lake-nightly lake exe cache get' ran

1.91 ± 0.05 times faster than 'lake-v4 exe cache get'

W
in

do
w

s

Cloud Builds for All

● Our goal is to provide a general service for caching cloud builds that can
meet the needs of both mathlib and other packages within the ecosystem
(e.g., Kevin’s FLT project, LeanInfer, FFIs, etc.)

● To do this effectively, Lean & Lake need a package index that can store
metadata about packages and provide a online portal from which to distribute
cloud builds.

● Thus, for this reason and others, we sought to create a package repository for
Lean and Lake.

Reservoir
● crates.io for Lean/Lake

○ for LaTeX lovers, CTAN

● searchable package index

● includes a ecosystem-wide
testbed which will build, test, and
check the compatibility of popular
packages with the latest Lean
toolchain(s)

https://crates.io/
https://www.ctan.org/

Package Pages
● as development progresses,

individual package pages will
provide more Lean/Lake-specific
information than GitHub can
provide

● syntax highlighting is also further
tunable for Lean

● if you have any suggestions on
what you would like to see here,
please share them!

Some Near-Term Plans

Reservoir

● Store testbed builds in Reservoir cloud storage and fetch them with Lake
● Add data on a package’s dependency tree to Reservoir
● Test packages across multiple toolchains, run external checkers

Lake

● Make more package configuration data available in the Lake manifest
● Intelligent toolchain versioning on `lake update` (lake#180)
● Proper support for C FFIs which depend on the C++ stdlib
● Support for shared external libraries

https://github.com/leanprover/lake/issues/180

Elaboration Performance Plans

Done: significant improvements to reduction, defeq, server performance

Short-term: incremental execution of tactic blocks

Mid-term: file-level parallelism, of theorems and much more

Long-term: module system, to define abstract interfaces of files and cut down on
rebuilds

Parser Plans

#lang Lean.Language.Programming
#lang Lean.Language.Math
#lang Lean.Doc.Manual

● Extensibility: new dialects.
● Education: use simplified subset.
● DSLs: domain specific languages.
● Modularity: allows you explicitly state the subset/dialect.

Reserved tokens per syntactic category.

Documentation Tooling - Plans and Dreams

● No documentation tool works well for everyone - bloggers, textbook authors,
paper authors, and package doc writers have different but related needs

● Plan: documentation as DSL in Lean
○ Library of re-usable documentation components (code samples, embedded maths, section

headers, figures, …)

○ Export to single HTML page, multi-page online book, epub, various journals' LaTeX, etc

○ Doc components in Lean packages like any other

○ Convenient syntax, mostly-Markdown-compatible

● Use #lang to select the right syntax
for the file on the first line and import
the right libraries

● Lean provides highlighting to the
editor, and all the usual features still
work

● This code example library allows
provisional examples that aren't in
scope in subsequent examples

Hovers will work as usual for custom syntax

Right-click menu

Code actions for changing between list
styles

This code examples library invokes the
elaborator in the usual way, so all interactive
editing features can work as usual in the
embedded examples

Documentation Tooling - Plans and Dreams

● Other goals:

○ Integrate nicely with docstrings, doc-gen4, etc

○ Support all existing documentation - port FPiL and the manual ASAP

○ Integrate with playgrounds, editors, and other tools

● Current status: design sketches, feasibility studies

● Please send your feedback and interesting use cases to david@lean-fro.org
or say "hi" on Zulip

mailto:david@lean-fro.org

Lean is an ideal framework for developing ML reasoning

ML and Lean

LLMs trained on:
● Mathlib + all Lean on github
● leanprover.zulipchat.com
● all of mathematics!
● RL from Lean feedback

Lean

● autoformalization
● proof steps
● proof search

● 🎉
● remaining goals
● errors

Machine Learning and Lean

● We want tactic suggestion tools (LeanInfer, LLMStep, …) for all users.
● Smoothing the path for outside ML groups to “solve math” using Lean.
● We’d like to see reusable ML components for

○ Premise selection
○ Tactic suggestion
○ Proof search
○ Auto-formalization

● New features in the Lean REPL targeting ML users:
○ experimental tactic mode
○ pickling REPL states for distributed use

● Data extraction tools at lean-training-data.

https://github.com/semorrison/lean-training-data

What about?

● Compiler: more people joining soon.
● Sledgehammer for Lean: Yes, it is on our roadmap.
● Efficient kernel reduction: Joachim is starting next month ;)

Social media

Follow us @

Twitter
LinkedIn
Mastodon

Q & A

