Scaling Lean to the next Millions of
Lines of Proofs

Sebastian Ullrich (Lean FRO)

VN

THEOREM PROVER

leanprover.github.io/publications/

https://leanprover.github.io/publications/

Focused Research Organization (FRO)

A new type of nonprofit startup for science developed by Convergent Research

Large-Scale Effort

Corporation

Industrial
R&D Lab

Mid-Stage
Startup

Open-Source
Software

Academic
Consortia

Tightly,
Coordinated,
Focused Team

Produces
Public Goods,
Not Private Returns

Academic
Co-Authors

Individual
Academic
Researcher(s)

Early Startup

convergentresearch.org

https://www.convergentresearch.org/

The Lean FRO

Mission: address scalability, usability, and proof automation in Lean
~7 FTEs by end of year

Supported by Simons Foundation International, Alfred P. Sloan Foundation, and
Richard Merkin

lean-fro.org

https://lean-fro.org

The Lean FRO

Mission: address SEEIGBMN, usability, and proof automation in Lean
~7 FTEs by end of year

Supported by Simons Foundation International, Alfred P. Sloan Foundation, and
Richard Merkin

lean-fro.org

https://lean-fro.org

Questions of Scale

“Can mathlib scale to 100 times its present size, with a community 100 times its
present size and commits going in at 100 times the present rate? [...] Will the

proofs be maintained afterwards [...]?"

— Joseph Myers on Lean Zulip

https://leanprover.zulipchat.com/#narrow/stream/113488-general/topic/lots.20of.20theorems/near/378297465

Part 1;: Status Quo

Mathlib Growth

Number of lines

1200000

1000000

800000

600000

400000

200000

leanprover-community.github.io/mathlib_stats.html

https://leanprover-community.github.io/mathlib_stats.html

The Mathlib Port

s lines
1,500,000

1,200,000
900,000
600,000

300,000

T T T T T T T T T
22-11-01 2022-12-01 2023-01-01 2023-02-01 2023-03-01 2023-04-01 2023-05-01 2023-06-01 2023-07-01

The Mathlib Port; Build Times

s lines
10,000 1,500,000

8,000 m 1,200,000
J/m
6,000 900,000
4,000 600,000
2,000 300,000
0 - . : . . - . . . 0
2022-11-01 2022-12-01 2023-01-01 2023-02-01 2023-03-01 2023-04-01 2023-05-01 2023-06-01 2023-07-01

speed.lean-fro.org/mathlib4

http://speed.lean-fro.org/mathlib4

The Mathlib Port: Breakdown into Categories

s other

21,000
18,000
45% typeclass inference
15,000

12,000

9,000

1 -15% scale Expr.replace cache with input size
#2210 -20% skip proof args during unification

#2003 -25% eagerly reduce projections during unification

6,000 ‘LQ‘ 16% other tactics
N
** 13% interpretation
e 11% simplifier, other elab
3,000
i ——— 5% import, compilation
i 0,
M - 4% kernel
5 ——— — " — .
i —— — R 0.2% parsing
2022-11-01 2022-12-01 2023-01-01 2023-02-01 2023-03-01 2023-04-01 2023-05-01 2023-06-01 2023-07-01

10

https://github.com/leanprover/lean4/pull/2003
https://github.com/leanprover/lean4/pull/2151
https://github.com/leanprover/lean4/pull/2210

NormedLmearOrderedGroup LmearOrderedField

LinearOrderedSemifield l NormmedOrderedGroup LmearOrderedCommRing

~., . —
LmearOrderedCommSemiring LmearOrderedRing
S

[

=
3 >C—
*—» —
> CommGroupWthZero OrderedCommSemimg : LinearOrderedCancelAddC o@
R

——— N_A}i / /

CommSemiring ' GroupWithZero . OrderedSemrmg < '
e
e
.' =X '—-—’, ‘,
I CancelMonoidWithZero ‘ NonUnitalCommS emiring l
< _
\
Ordered AddCommMonoid

DivInvOneMonoid NonUnttalSemiring
DnIn\Monmd I InvOneClass ' Mon01dW1chero . NonAssocSemiring

———a " \ <
MulZeroOneClass

ngroup

1

NonUnitalNonAssocSemirmg Add

Performance: Before (Lean 3) and After (Lean 4)
On a Ryzen 9 (32 threads):
Total build time: 48 min ~> 21 min (-55%)

Single-core time: 23 hours ~> 5 hours (-77%)

Typeclass inference: 3 hours ~> 1 hour 46 min (-42%)

12

Performance: Importing Mathlib

disk: 436 MB ~> 3.1 GB (+711%)
time: 10.6 s ~> 1.5 s (-86%)

allocations: 4.6 GB ~> 243 MB (-95%)

due to zero-cost deserialization via memory mapping

13

Part 2: Challenges

Automation is Hard

Current and future bottleneck is clearly automation, >70% of current build time
Lean 4 discrimination tree essential for avoiding unification during search
Tabled resolution avoids redundant goals in typeclass inference

Ultimately an open-ended problem

15

What Do We Want to Measure?

Time for full rebuild is simple, but more relevant metrics in practice would be

e time of incremental build

e time to see the effect of a change

16

Current Lean 4 Build Model

File level: standard LCF-style pipeline: parse, process, and kernel-check

declaration by declaration. No parallelism.

Package level: build dependency graph from (transitive) import declarations,

process in parallel. No short-circuiting.

17

Part 3: Plans and Dreams

Where to Even Begin

More parallelism gets us linear speedup, increasing each year. That’s nice.

Build short-circuiting can reduce a global rebuild to a limited local one.

That’s great.

19

Build Short-Circuiting

F}nyecompile dependents only when really affected by a change

e C, C++, ML: write public interface of implementation file manually
Coq: A Case for Lightweight Interfaces in Coq [Swasey et al. 2022] proposal
e GHC: automatically derive interface from file contents

e Rust: track fine-grained dependencies of disk-memoized queries

20

Build Short-Circuiting

F}nyfecompile dependents only when really affected by a change

e C, C++, ML: write public interface of implementation file manually

Coq: A Case for Lightweight Interfaces in Coq [Swasey et al. 2022] proposal

* GHC: automatically derive interface from file contents

e Rust: track fine-grained dependencies of disk-memoized queries

21

Towards a Lean Interface

Signatures of public declarations

private def merge [Ord o] (xs ys : Array o) : Array o := ..
def sort [Ord o] (xs : Array o) : Array « := match xs with ..
theorem sort sorted : Sorted (sort xs) := by ..

No proofs. Irrelevant anyway!

No definition bodies or equations by default

o Afile-level Controlling unfolding in type theory [Gratzer et al. 2022]
o abbreviations, definitions to be inlined always included

22

https://arxiv.org/abs/2210.05420

Cutting the Import Knot

Private imports are not part of the signature

import Mathlib.Algebra.Rin

private import Mathlib.Data.Real.CauSegCompletion

def Real : Type := CauSeq.Completion.Cauchy (abs : @ - @)

instance : Ring Real := ..

Demotes public changes to private changes from this point on!

23

Metaprogramming Woes

Metaprogramming is anti-modular: promotes private changes to public

import TInit.Data.Arrav.Sort for meta

macro "sorted" nums:num* : term =>

let nums := nums.sort

meta phase isolates code needed for build-time execution

24

Metaprogramming Woes

Metaprogramming is anti-modular: promotes private changes to public

import TInit.Data.Arrav.Sort for meta

macro "sorted" nums:num* : term =>

let nums := nums.sort

meta phase isolates code needed for build-time execution

But what about a quick #eval #[2, 1].sort?

Interactive use might want to be more lenient

25

Transitioning

How do we move 1M+ lines to this model? Incrementally!

e Keep import semantics as is, disregarding annotations upstream

e Introduce import signature command for restricted behavior, adapt files

top-down

26

Usability

Specifying fine-grained imports is clearly more work!

For new files and transitioning, tooling to reduce coarse imports would be great

27

Usability

Specifying fine-grained imports is clearly more work!
For new files and transitioning, tooling to reduce coarse imports would be great

For modifying existing files, language server should offer options outside current

Imports as well

@ test.py
® pathlib|

1b a Variable 1import pathlib

28

Summary

Lean 4 brings significant improvements to scalability over its predecessors

Modularity and abstraction will be key for uncoupling resource use and code

growth

29

Categories normalized by task-clock

ooooo

0000000000

30

More Related Work

e Isabelle can postpone/parallelize proof checking across files
e so can Coq quick-compile

e iCoq [Celik et al. 2017] tracks dependencies for regression proof selection

31

