
Scaling Lean to the next Millions of
Lines of Proofs

Sebastian Ullrich (Lean FRO)

leanprover.github.io/publications/

https://leanprover.github.io/publications/

Focused Research Organization (FRO)

A new type of nonprofit startup for science developed by Convergent Research

2
convergentresearch.org

https://www.convergentresearch.org/

The Lean FRO

Mission: address scalability, usability, and proof automation in Lean

~7 FTEs by end of year

Supported by Simons Foundation International, Alfred P. Sloan Foundation, and

Richard Merkin

lean-fro.org

3

https://lean-fro.org

The Lean FRO

Mission: address scalability, usability, and proof automation in Lean

~7 FTEs by end of year

Supported by Simons Foundation International, Alfred P. Sloan Foundation, and

Richard Merkin

lean-fro.org

4

https://lean-fro.org

Questions of Scale

“Can mathlib scale to 100 times its present size, with a community 100 times its

present size and commits going in at 100 times the present rate? [...] Will the

proofs be maintained afterwards [...]?”

– Joseph Myers on Lean Zulip

5

https://leanprover.zulipchat.com/#narrow/stream/113488-general/topic/lots.20of.20theorems/near/378297465

Part 1: Status Quo

6

Mathlib Growth

7
leanprover-community.github.io/mathlib_stats.html

https://leanprover-community.github.io/mathlib_stats.html

The Mathlib Port

8

The Mathlib Port: Build Times

9
speed.lean-fro.org/mathlib4

http://speed.lean-fro.org/mathlib4

The Mathlib Port: Breakdown into Categories

10

45% typeclass inference

16% other tactics

11% simplifier
13% interpretation

, other elab

 5% import, compilation
 4% kernel

#2
00

3
-2

5%
 e

ag
er

ly
 re

du
ce

 p
ro

je
ct

io
ns

 d
ur

in
g

un
ifi

ca
tio

n

#2
15

1
-1

5%
 s

ca
le

 E
xp

r.r
ep

la
ce

 c
ac

he
 w

ith
 in

pu
t s

iz
e

#2
21

0
-2

0%
 s

ki
p

pr
oo

f a
rg

s
du

rin
g

un
ifi

ca
tio

n

 0.2% parsing

https://github.com/leanprover/lean4/pull/2003
https://github.com/leanprover/lean4/pull/2151
https://github.com/leanprover/lean4/pull/2210

11

Performance: Before (Lean 3) and After (Lean 4)

12

On a Ryzen 9 (32 threads):

Total build time: 48 min ~> 21 min (-55%)

Single-core time: 23 hours ~> 5 hours (-77%)

Typeclass inference: 3 hours ~> 1 hour 46 min (-42%)

Performance: Importing Mathlib

disk: 436 MB ~> 3.1 GB (+711%)

time: 10.6 s ~> 1.5 s (-86%)

allocations: 4.6 GB ~> 243 MB (-95%)

due to zero-cost deserialization via memory mapping

13

Part 2: Challenges

14

Automation is Hard

15

Current and future bottleneck is clearly automation, >70% of current build time

Lean 4 discrimination tree essential for avoiding unification during search

Tabled resolution avoids redundant goals in typeclass inference

Ultimately an open-ended problem

What Do We Want to Measure?

Time for full rebuild is simple, but more relevant metrics in practice would be

● time of incremental build

● time to see the effect of a change

16

Current Lean 4 Build Model

File level: standard LCF-style pipeline: parse, process, and kernel-check

declaration by declaration. No parallelism.

Package level: build dependency graph from (transitive) import declarations,

process in parallel. No short-circuiting.

17

Part 3: Plans and Dreams

18

Where to Even Begin

More parallelism gets us linear speedup, increasing each year. That’s nice.

Build short-circuiting can reduce a global rebuild to a limited local one.

That’s great.

19

Build Short-Circuiting

Easy: recompile dependents only when really affected by a change

20

● C, C++, ML: write public interface of implementation file manually

Coq: A Case for Lightweight Interfaces in Coq [Swasey et al. 2022] proposal

● GHC: automatically derive interface from file contents

● Rust: track fine-grained dependencies of disk-memoized queries

Build Short-Circuiting

Easy: recompile dependents only when really affected by a change

● C, C++, ML: write public interface of implementation file manually

Coq: A Case for Lightweight Interfaces in Coq [Swasey et al. 2022] proposal

● GHC: automatically derive interface from file contents

● Rust: track fine-grained dependencies of disk-memoized queries

21

Towards a Lean Interface

● Signatures of public declarations

private def merge [Ord α] (xs ys : Array α) : Array α := …

def sort [Ord α] (xs : Array α) : Array α := match xs with …

theorem sort_sorted : Sorted (sort xs) := by …

● No proofs. Irrelevant anyway!

● No definition bodies or equations by default
○ A file-level Controlling unfolding in type theory [Gratzer et al. 2022]
○ abbreviations, definitions to be inlined always included

22

https://arxiv.org/abs/2210.05420

Cutting the Import Knot

Private imports are not part of the signature

import Mathlib.Algebra.Ring

private import Mathlib.Data.Real.CauSeqCompletion

def Real : Type := CauSeq.Completion.Cauchy (abs : ℚ → ℚ)

instance : Ring Real := …

Demotes public changes to private changes from this point on!

23

Metaprogramming Woes

Metaprogramming is anti-modular: promotes private changes to public

import Init.Data.Array.Sort for meta

macro "sorted" nums:num* : term =>
 let nums := nums.sort
 …

meta phase isolates code needed for build-time execution

24

Metaprogramming Woes

Metaprogramming is anti-modular: promotes private changes to public

import Init.Data.Array.Sort for meta

macro "sorted" nums:num* : term =>
 let nums := nums.sort
 …

meta phase isolates code needed for build-time execution

But what about a quick #eval #[2, 1].sort?

Interactive use might want to be more lenient

25

Transitioning

How do we move 1M+ lines to this model? Incrementally!

● Keep import semantics as is, disregarding annotations upstream

● Introduce import signature command for restricted behavior, adapt files

top-down

26

Usability

Specifying fine-grained imports is clearly more work!

For new files and transitioning, tooling to reduce coarse imports would be great

27

Usability

Specifying fine-grained imports is clearly more work!

For new files and transitioning, tooling to reduce coarse imports would be great

For modifying existing files, language server should offer options outside current

imports as well

28

Summary

Lean 4 brings significant improvements to scalability over its predecessors

Modularity and abstraction will be key for uncoupling resource use and code

growth

29

Categories normalized by task-clock

30

More Related Work

31

● Isabelle can postpone/parallelize proof checking across files

● so can Coq quick-compile

● iCoq [Celik et al. 2017] tracks dependencies for regression proof selection

