Lean 4 Tutorial

NASA Formal Methods 2022

Leonardo de Moura (MSR) and Sebastian Ullrich (KIT)
Part I: Introduction
Introduction

Lean 4 is a platform for
 - Software verification
 - Formal mathematics
 - Developing custom automation & domain specific languages (DSLs)

Goals
 - Extensibility, Expressivity, Scalability, Proof stability
 - An efficient functional programming language

Lean is based on dependent type theory
Resources

Website: https://leanprover.github.io/

Theorem Proving in Lean: https://leanprover.github.io/theorem_proving_in_lean4/

Zulip channel: https://leanprover.zulipchat.com/

Mathlib 4: https://github.com/leanprover-community/mathlib4

Useful links: https://leanprover.github.io/links/

Community website: https://leanprover-community.github.io/
Mathlib

The Lean mathematical library, mathlib, is a community effort to build a **unified library of mathematics** in Lean.

Mathlib statistics

<table>
<thead>
<tr>
<th>Counts</th>
<th>Definitions</th>
<th>Theorems</th>
<th>Contributors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>36840</td>
<td>88645</td>
<td>247</td>
</tr>
</tbody>
</table>

![Graph showing the growth of mathlib over time](image)
Project momentum

The Effort to Build the Mathematical Library of the Future

Mathematicians welcome computer-assisted proof in ‘grand unification’ theory

2020’s Biggest Breakthroughs in Math and Computer Science

2,019,371 views • Dec 23, 2020

Quanta Magazine
514K subscribers

Charles Hoskinson @NOHK_Charles

The cats out of the bag. Today I got to announce the Hoskinson Center for Formal Mathematics at Carnegie Mellon I donated 20 million dollars to create a permanent center to rewrite the language of math.
Augmented Mathematical Intelligence (AMI) at Microsoft

Mission

Empower mathematicians working on cutting-edge mathematics

Democratize math education

Platform for Math-AI research

Program manager, engineers, contractors, and academic gifts
Lean Zulip channel

Stanislas Polu
Hi Everyone. We’re tearing down the model that is backing the `gptf` tactic but will work on getting a new model online soon. We’ll also work on providing a better experience potentially looking to interface with the VSCode extension more directly. If you have any idea you’d like us to explore, please let us know, the goal is really to provide the community with useful assistance from the models we train. Please let me know if you have questions.

Peter Scholze
I think in general C-sheaves on CHaus are a full subcategory of C-sheaves on ProFin and a full subcategory of C-sheaves on ExtrDisc, and the essential images are given by those sheaves where the limit that wants to define the value on some compact Hausdorff (resp. profinite) actually exists in C.

Will Wan
How to prove this one?

$\neg(p \implies q) \implies p = q$
Need help!

Riccardo Brasca
I really like what is going on with #12777. @Sebastian Monnet proved that if E, F, and K are fields such that $\text{finite-dimensional } F \subseteq E$, then $\text{finite-type } (E \to (F) K)$. We already have docs#field.alg_hom_fin-type, that is exactly the same statement with the additional assumption $\text{is-separable } F \subseteq E$.

The interesting part of the PR is that, with the new theorem, the linter will automatically flag all the theorem that can be generalized (for free), removing the separability assumption. I think in normal math this is very difficult to achieve, if I generalize a 50 years old paper that assumes $p \not\equiv 2$ to all primes, there is no way I can manually check and maybe generalize all the papers that use the old one.
Lean 4 dev update meetings

New monthly online event

First one will be on June 15th

Details will be posted on our website and twitter https://twitter.com/leanprover
Lean 4 - What is new?

Lean 4 is implemented in Lean

- **Extensibility**: parser, elaborator, compiler, tactics, formatter, etc
- **Hygienic macro system** - simple extensions should be simple to implement
- **Our LSP (Language Server Protocol) server** is great
- Compiler generates **efficient C code**
- Runtime uses reference counting for GC, and performs destructive updates if RC = 1
- **Functional but in place (FBIP)**
- **Safe** support for **low-level tricks** such as pointer equality
- **Tabled type class resolution**
- Many scalability and usability improvements
"Hello world"

```plaintext
#eval "hello" ++ " " ++ "world"
-- "hello world"

#check true
-- Bool

def x := 10
#eval x + 2
-- 12

def double (x : Int) := 2*x
#eval double 3
-- 6
#check double
-- Int → Int
example : double 4 = 8 := rfl0
```
First-class functions

def twice (f : Nat → Nat) (a : Nat) :=
 f (f a)

#check twice
-- (Nat → Nat) → Nat → Nat

#eval twice (fun x => x + 2) 10

theorem twice_add_2 (a : Nat) : twice (fun x => x + 2) a = a + 4 := rfl

-- `(⋅ + 2)` is syntax sugar for `(fun x => x + 2)`.
#eval twice (⋅ + 2) 10
Enumerated types

```cofml
inductive Weekday where
  | sunday | monday | tuesday | wednesday
  | thursday | friday | saturday
#check Weekday.sunday
-- Weekday
open Weekday
#check sunday

def natOfWeekday (d : Weekday) : Nat :=
  match d with
  | sunday    => 1
  | monday    => 2
  | tuesday   => 3
  | wednesday => 4
  | thursday  => 5
  | friday    => 6
  | saturday  => 7
```
Enumerated types (cont.)

```lean
def Weekday.next (d : Weekday) : Weekday :=
  match d with
  | sunday    => monday
  | monday    => tuesday
  | tuesday   => wednesday
  | wednesday => thursday
  | thursday  => friday
  | friday    => saturday
  | saturday  => sunday

def Weekday.previous : Weekday → Weekday
  | sunday    => saturday
  ...

theorem Weekday.next_previous (d : Weekday) : d.next.previous = d :=
  match d with
  | sunday   => rfl
  | monday   => rfl
  ...
  | saturday => rfl
```
Proving theorems using tactics

```lean
theorem Weekday.next_previous' (d : Weekday) : d.next.previous = d := by -- switch to tactic mode
  cases d -- Creates 7 goals
  rfl; rfl; rfl; rfl; rfl; rfl; rfl

theorem Weekday.next_previous'' (d : Weekday) : d.next.previous = d := by
  cases d <;> rfl
```
What is the type of Nat?

```lean
#check 0
-- Nat
#check Nat
-- Type
#check Type
-- Type 1
#check Type 1
-- Type 2
#check Eq.refl 2
-- 2 = 2
#check 2 = 2
-- Prop
#check Prop
-- Type

example : Prop = Sort 0 := rfl
example : Type = Sort 1 := rfl
example : Type 1 = Sort 2 := rfl
```
Implicit arguments and universe polymorphism

```haskell
def f (α β : Sort u) (a : α) (b : β) : α := a
#eval f Nat String 1 "hello"
-- 1

def g {α β : Sort u} (a : α) (b : β) : α := a
#eval g 1 "hello"

def h (a : α) (b : β) : α := a

#check g
-- ?m.1 → ?m.2 → ?m.1
#check @g
-- {α β : Sort u} → a → β → α
#check @h
-- {α : Sort u_1} → {β : Sort u_2} → a → β → α
#check g (α := Nat) (β := String)
```
Inductive Types

inductive Tree (β : Type v) where
 | leaf
 | node (left : Tree β) (key : Nat) (value : β) (right : Tree β)
deriving Repr

#eval Tree.node .leaf 10 true .leaf
-- Tree.node Tree.leaf 10 true Tree.leaf

inductive Vector (α : Type u) : Nat → Type u
 | nil : Vector α 0
 | cons : α → Vector α n → Vector α (n+1)
Recursive functions

print Nat -- Nat is an inductive type

def fib (n : Nat) : Nat :=
 match n with
 | 0 => 1
 | 1 => 1
 | n+2 => fib (n+1) + fib n

eexample : fib 5 = 8 := rfl

eexample : fib (n+2) = fib (n+1) + fib n := rfl
print fib

/-
def fib : Nat → Nat :=
fun n =>
 Nat.brecOn n fun n f =>
 (match (motive := (n : Nat) → Nat.below n → Nat) n with
 ...
 -/
Well-founded recursion

```haskell
def ack : Nat → Nat → Nat
| 0, y => y+1
| x+1, 0 => ack x 1
| x+1, y+1 => ack x (ack (x+1) y)
termination_by ack x y => (x, y)

def sum (a : Array Int) : Int :=
  let rec go (i : Nat) :=
    if i < a.size then
      a[i] + go (i+1)
    else
      0
  go 0
termination_by go i => a.size - i

set_option pp.proofs true
#print sum.go
/-

def sum.go : Array Int → Nat → Int :=
fun a => WellFounded.fix (sum.go.proof_1 a) fun i a_1 =>
  if h : i < Array.size a then Array.getOp a i + a_1 (i + 1) (sum.go.proof_2 a i h) else 0
/-
```
Mutual recursion

```
inductive Term where
  | const : String \rightarrow Term
  | app   : String \rightarrow List Term \rightarrow Term

namespace Term
mutual
def numConsts : Term \rightarrow Nat
  | const _ => 1
  | app _ cs => numConstsLst cs

def numConstsLst : List Term \rightarrow Nat
  | [] => 0
  | c :: cs => numConsts c + numConstsLst cs
end

mutual
def replaceConst (a b : String) : Term \rightarrow Term
  | const c => if a = c then const b else const c
  | app f cs => app f (replaceConstLst a b cs)

def replaceConstLst (a b : String) : List Term \rightarrow List Term
  | [] => []
  | c :: cs => replaceConst a b c :: replaceConstLst a b cs
end
```
Mutual recursion in theorems

mutual

theorem numConsts_replaceConst : numConsts (replaceConst a b e) = numConsts e := by
 match e with
 | const c => simp [replaceConst]; split <;;> simp [numConsts]
 | app f cs => simp [replaceConst, numConsts, numConsts_replaceConstLst a b cs]
end

theorem numConsts_replaceConstLst : numConstsLst (replaceConstLst a b es) = numConstsLst es := by
 match es with
 | [] => simp [replaceConstLst, numConstsLst]
 | c :: cs =>
 simp [replaceConstLst, numConstsLst, numConsts_replaceConst a b c, numConsts_replaceConstLst a b cs]
end
Dependent pattern matching

```lean
inductive Vector (α : Type u) : Nat → Type u
  | nil : Vector α 0
  | cons : α → Vector α n → Vector α (n+1)

infix:67 "::" => Vector.cons

def Vector.zip : Vector α n → Vector β n → Vector (α × β) n
  | nil, nil => nil
  | a::as, b::bs => (a, b) :: zip as bs

#rint Vector.zip
/-
def Vector.zip.{u_1, u_2} : {α : Type u_1} → {n : Nat} → {β : Type u_2} → Vector α n → Vector β n → Vector (α × β) n :=
  fun {a} {n} {β} x x_1 =>
  Vector.brecOn (motive := fun {n} x => {β : Type u_2} → Vector β n → Vector (α × β) n) x
  ...
-/
```
Structures

structure Point where
 x : Int := 0
 y : Int := 0
 deriving Repr

#eval Point.x (Point.mk 10 20)
-- 10
#eval { x := 10, y := 20 : Point }

def p : Point := { y := 20 }
#eval p.x
#eval p.y
#eval { p with x := 5 }
-- { x := 5, y := 20 }

structure Point3D extends Point where
 z : Int
Type classes

class ToString (a : Type u) where
 toString : a → String

#check @ToString.toString
-- {a : Type u_1} → [self : ToString a] → a → String

instance : ToString String where
 toString s := s
instance : ToString Bool where
 toString b := if b then "true" else "false"

#eval ToString.toString "hello"
export ToString (toString)

#eval toString true
-- #eval toString (true, "hello") -- Error

instance [ToString a] [ToString β] : ToString (a × β) where
 toString p := "(" ++ toString p.1 ++ "," ++ toString p.2 ++ ")"

#eval toString (true, "hello")
-- "(true, hello)"
Type classes are heavily used in Lean

class Mul (α : Type u) where
 mul : α → α → α
infixl:70 " * " => Mul.mul
def double [Mul α] (a : α) := a * a

class Semigroup (α : Type u) extends Mul α where
 mul_assoc : ∀ a b c : α, (a * b) * c = a * (b * c)
instance : Semigroup Nat where
 mul := Nat.mul
 mul_assoc := Nat.mul_assoc
#eval double 5

class Functor (f : Type u → Type v) : Type (max (u+1) v) where
 map : (α → β) → f α → f β
infixr:100 " <$> " => Functor.map

class LawfulFunctor (f : Type u → Type v) [Functor f] : Prop where
 id_map (x : f α) : id <$> x = x
 comp_map (g : α → β) (h : β → γ) (x : f α) : (h ∘ g) <$> x = h <$> g <$> x
Deriving instances automatically

We have seen deriving `Repr` in a few examples.

It is an instance generator.

Lean comes equipped with generators for the following classes.

`Repr, ToString, Inhabited, BEq, DecidableEq, Hashable, Ord, FromToJson, SizeOf`
Tactics

eexample : p → q → p ∧ q ∧ p := by
 intro hp hq
 apply And.intro
 exact hp
 apply And.intro
 exact hq
 exact hp

example : p → q → p ∧ q ∧ p := by
 intro hp hq; apply And.intro hp; exact And.intro hq hp
Structuring proofs

example : p → q → p ∧ q ∧ p := by
 intro hp hq
 apply And.intro
 case left => exact hp
 case right =>
 apply And.intro
 case left => exact hq
 case right => exact hp

case left
 p q : Prop
 hp : p
 hq : q
 ⊢ p

case right
 p q : Prop
 hp : p
 hq : q
 ⊢ q ∧ p
intro tactic variants

example (p q : α → Prop) : (∃ x, p x ∧ q x) → ∃ x, q x ∧ p x := by
 intro h
 match h with
 | Exists.intro w (And.intro hp hq) => exact Exists.intro w (And.intro hq hp)

example (p q : α → Prop) : (∃ x, p x ∧ q x) → ∃ x, q x ∧ p x := by
 intro (Exists.intro _ (And.intro hp hq))
 exact Exists.intro _ (And.intro hq hp)

example (p q : α → Prop) : (∃ x, p x ∧ q x) → ∃ x, q x ∧ p x := by
 intro ⟨_, hp, hq⟩
 exact ⟨_, hq, hp⟩

example (α : Type) (p q : α → Prop) : (∃ x, p x ∨ q x) → ∃ x, q x ∨ p x := by
 intro
 | ⟨_, .inl h⟩ => exact ⟨_, .inr h⟩
 | ⟨_, .inr h⟩ => exact ⟨_, .inl h⟩
Inaccessible names

example : \(\forall x \ y : \text{Nat}, \ x = y \to y = x \) := by
 intros
 apply Eq.symm
 assumption

\[x \mapsto y \mapsto \text{Nat} \]
\[x \mapsto y \mapsto a = b \]

\[y \mapsto x \mapsto \text{Nat} \]
\[y \mapsto x \mapsto a = b \]
More tactics

example (p q : Nat → Prop) : (∃ x, p x ∧ q x) → ∃ x, q x ∧ p x := by
 intro h
 cases h with
 | intro x hpq =>
 cases hpq with
 | intro hp hq =>
 exists x

example : p ∧ q → q ∧ p := by
 intro p
 cases p
 constructor <;> assumption

example : p ∧ ¬p → q := by
 intro h
 cases h
 contradiction
Structuring proofs (cont.)

element : p \land (q \lor r) \rightarrow (p \land q) \lor (p \land r) := by
 intro h
 have hp : p := h.left
 have hqr : q \lor r := h.right
 show (p \land q) \lor (p \land r)
 cases hqr with
 | inl hq => exact Or.inl \langle hp, hq \rangle
 | inr hr => exact Or.inr \langle hp, hr \rangle

element : p \land (q \lor r) \rightarrow (p \land q) \lor (p \land r) := by
 intro \langle hp, hqr \rangle
 cases hqr with
 | inl hq =>
 have := And.intro hp hq
 apply Or.inl; exact this
 | inr hr =>
 have := And.intro hp hr
 apply Or.inr; exact this
Tactic combinators

example : p → q → r → p ∧ ((p ∧ q) ∧ r) ∧ (q ∧ r ∧ p) := by
 intros
 repeat (any_goals constructor)
 all_goals assumption

example : p → q → r → p ∧ ((p ∧ q) ∧ r) ∧ (q ∧ r ∧ p) := by
 intros
 repeat (any_goals (first | assumption | constructor))
Rewriting

example (f : Nat → Nat) (k : Nat) (h₁ : f 0 = 0) (h₂ : k = 0) : f k = 0 := by
rw [h₂] -- replace k with 0
rw [h₁] -- replace f 0 with 0

example (f : Nat → Nat) (k : Nat) (h₁ : f 0 = 0) (h₂ : k = 0) : f k = 0 := by
rw [h₂, h₁]

example (f : Nat → Nat) (a b : Nat) (h₁ : a = b) (h₂ : f a = 0) : f b = 0 := by
rw [← h₁, h₂]

example (f : Nat → Nat) (a : Nat) (h : 0 + a = 0) : f a = f 0 := by
rw [Nat.zero_add] at h
rw [h]

def Tuple (α : Type) (n : Nat) := { as : List α // as.length = n }

eexample (n : Nat) (h : n = 0) (t : Tuple α n) : Tuple α 0 := by
rw [h] at t
exact t
Simplifier

example (p : Nat → Prop) : (x + 0) * (0 + y * 1 + z * 0) = x * y := by simp

example (p : Nat → Prop) (h : p (x * y)) : p ((x + 0) * (0 + y * 1 + z * 0)) := by simp; assumption

def f (m n : Nat) : Nat := m + n + m

eexample (h : n = 1) (h' : 0 = m) : (f m n) = n := by simp [h, ← h', f]

eexample (p : Nat → Prop) (h₁ : x + 0 = x') (h₂ : y + 0 = y')
 : x + y + 0 = x' + y' := by simp at *
simp [*]
def mk_symm (xs : List α) :=
 xs ++ xs.reverse

@[simp] theorem reverse_mk_symm : (mk_symm xs).reverse = mk_symm xs := by
 simp [mk_symm]

theorem tst : (xs ++ mk_symm ys).reverse = mk_symm ys ++ xs.reverse := by
 simp

#print tst
-- Lean reverse_mk_symm, and List.reverse_append
split tactic

```lean
def f (x y z : Nat) : Nat :=
  match x, y, z with
  | 5, _, _ => y
  | _, 5, _ => y
  | _, _, 5 => y
  | _, _, _ => 1

eexample : x ≠ 5 → y ≠ 5 → z ≠ 5 → z = w → f x y w = 1 := by
  intros
  simp [f]
  split
  . contradiction
  . contradiction
  . contradiction
  . rfl
```

```lean
def g (xs ys : List Nat) : Nat :=
  match xs, ys with
  | [a, b], _ => a+b+1
  | _, [b, c] => b+1
  | _, _ => 1

eexample (xs ys : List Nat) (h : g xs ys = 0) : False := by
  unfold g at h; split at h <|> simp_arith at h
```
induction tactic

example (as : List α) (a : α) : (as.concat a).length = as.length + 1 := by
 induction as with
 | nil => rfl
 | cons x xs ih => simp [List.concat, ih]

example (as : List α) (a : α) : (as.concat a).length = as.length + 1 := by
 induction as <;;> simp! [*]
Part II: Extending Lean in Lean
Local Imperative Programming in Lean

Monadic programming is ubiquitous in Lean

do notation makes it manageable

```lean
def main : IO Unit := do
  let stdin ← IO.getStdin
  let name ← stdin.getLine
  IO.println s!"Hello, {name}!"
```

Emulation of an “ordered sequence of commands” from imperative languages
Lean 4 extends *do* notation with

```lean
def main : IO UInt32 := do
  let stdin ← IO.getStdIn
  let name ← stdin.getLine
  if name.isEmpty then
    IO.println "Please enter a name!"
    return 1
  let mut sum := 0
  while true do
    let line ← stdin.getLine
    if line.isEmpty then break
    sum := sum + line.toNat!
  IO.println $s!"{name}, your sum is \{sum\}"
  return 0
```

conditional control flow
early return
iteration
mutable variables

warning: potentially highly addictive
Local Imperative Programming in Lean

Lean 4 is still a purely functional language!

Extended *do* notation is still compiled down to pure, monadic code

```lean
example [Monad m] [LawfulMonad m] (f : β → a → m β) (xs : List a) : 
  (do let mut y := init
       for x in xs do
           y ← f y x
       return y)
  =
     xs.foldlM f init
:= by induction xs generalizing init <;> simp_all!
```

Can be used in pure contexts via the *Id* monad
Extending Lean: Syntax & Semantics

Syntax

```
declare_syntax_cat index
syntax ident "::" term : index
syntax ident "<" term : index
syntax "{" index " | " term "}" : term
syntax "enum" ident "where" ("|" ident)* : command
```

Macros: Syntax → Syntax

```
macro_rules
| `({ $x:ident < $h | $e }) =>
  `(setOf (fun $x => $x < $h ∧ $e))
| ...
```

Elaborators: Syntax → Core

```
elab "(" args:term,* ")" : term <= t => do
  let Expr.const C .. := t.getAppFn | throw ...
  let [c] ← getCtors C | throw ...
  let stx ← `(($mIdent c) $args*)
  labTerm stx t
```

```
elab "trivial" : tactic => do
  ...
```

open categories

- hygienic by default
- type-aware

concrete syntax trees

- Racket/Rust-inspired
- flexible order
Macro Showcase: leanprover/doc-gen4

```lean
syntax jsxAttrName := ident <|> str
syntax jsxAttrVal := str <|> group("{" term "}")

syntax "<" ident jsxAttr* "/" : jsxElement
syntax "<" ident jsxAttr* "">" jsxChild* "</" ident ">" : jsxElement

macro_rules
| `(<$ attrs */>) =>
  `(Html.element $(quote (toString n.getId)) ...)
| `(<$ attrs >$children*</$m>) => ...
```

```lean
def classInstanceToHtml (name : Name) : HtmlM Html :=
  return <li><a href={←declNameToLink name}>{name.toString}</a></li>

def classInstancesToHtml (instances : Array Name) : HtmlM Html :=
  return
<details class="instances">
  <summary>Instances</summary>
  <ul>
  [-- instances.mapM classInstanceToHtml]
  </ul>
</details>
```
Syntax Showcase: arthurpaulino/FxyLang

```
declare_syntax_cat   literal
syntax ("-" nWs)? num : literal -- int
_ 

def mkLiteral : Lean.Syntax → Except String Literal
| `(literal| $[-%$neg]?$n:num) =>
   if neg.isNone
   then return .int <| Int.ofNat n.toNat
   else return .int <| Int.negOfNat n.toNat
| ...

#eval >>
f n :=
s := 0
i := 0
while i < n do
   i := i + 1
   s := s + i
s
!print f 5
<<.run -- 15
```
(Meta-)Programming Showcase: lecopivo/SciLean

-- wave equation

def H (m k : ℝ) (x p : ℝⁿ) : ℝ :=
 let Δx := (1 : ℝ)/(n : ℝ)
 (Δx/(2*m)) * ∥p∥² + (Δx * k/2) * (∑ i , ∥x[i] - x[i - 1]∥²)

argument x

 isSmooth, diff, hasAdjDiff, adjDiff

argument p

 isSmooth, diff, hasAdjDiff, adjDiff

def solver (m k : ℝ) (steps : Nat)
 : Impl (ode_solve (HamiltonianSystem (H m k))) := by

 -- Unfold Hamiltonian definition and compute gradients
 simp [HamiltonianSystem]

 -- Apply RK4 method
 rw [ode_solve_fixed_dt runge_kutta4_step]

 lift_limit steps "Number of ODE solver steps."); admit; simp

finish_impl

Integrated as a scripting language into Houdini
Macro Showcase: **dwrensha/lean4-maze**

```lean
syntax "░" : game_cell -- empty
syntax "▓" : game_cell -- wall
syntax "@" : game_cell -- player

syntax "\n" game_cell* "\n" : game_row

macro_rules | `(┌ $tb:horizontal_border* ┐
  $rows:game_row*
  └ $bb:horizontal_border* ┘) => ...

macro "west" : tactic =>
  `(first | apply step_west; simp | fail "cannot step west")

def maze1 := ┌──────┐
  │▓▓▓▓▓▓│
  │▓░░@░▓│
  │▓░░░░▓│
  │▓░░░░▓│
  │▓▓▓▓░▓│
  └──────┘

example : can_escape maze1 := by
  west
  west
  east
  south
  east
  south
  south
  east
  out
```