
Metaprogramming with
Dependent Type Theory

Big Proof - Isaac Newton Institute - July 12, 2017

Leonardo de Moura - Microsoft Research

joint work with
Gabriel Ebner - Vienna University of Technology

Sebastian Ullrich - Karlsruhe Institute of Technology

Jared Roesch - University of Washington

Jeremy Avigad - Carnegie Mellon University

https://leanprover.github.io/papers/tactic.pdf

https://leanprover.github.io/papers/tactic.pdf

The Lean team

• Everybody in the previous slide, and

• Mario Carneiro (CMU),

• Johannes Hölzl (CMU),

• Floris van Doorn (CMU),

• Rob Lewis (CMU),

• Daniel Selsam (Stanford)

Former Members:

• Soonho Kong (CMU),

• Jakob von Raumer (University of Nottingham)

http://von-raumer.de/

Many thanks to

• Cody Roux

• Georges Gonthier

• Grant Passmore

• Nikhil Swamy

• Assia Mahboubi	

• Bas Spitters 	

• Steve Awodey

• Ulrik Buchholtz 	

• Tom Ball

• David Christiansen

Lean aims to bridge the gap between interactive
and automated theorem proving

How are automated provers used at Microsoft?

Testing Software Verification

Software verification & automated provers

• Easy to use for simple properties

• Main problems:

• Scalability issues

• Proof stability

• in many verification projects:

• Hyper-V

• Ironclad & Ironfleet (https://github.com/Microsoft/Ironclad)

• Everest (https://project-everest.github.io/)

https://github.com/Microsoft/Ironclad
https://project-everest.github.io/

Automated provers are mostly blackboxes

“The Strategy Challenge in SMT Solving”, joint work with Grant
Passmore

Introduction: Lean

• New open source theorem prover (and programming language)

Soonho Kong and I started coding in the Fall of 2013

• Platform for

• Software verification

• Formalized Mathematics

• de Bruijn’s principle: small trusted kernel

• Dependent Type Theory

• Metaprogramming

• First official version was released at CADE 2015.

Metaprogramming

• Extend Lean using Lean

• Access Lean internals using Lean

• Type inference

• Unifier

• Simplifier

• Decision procedures

• Type class resolution

• …

• Proof/Program synthesis

The Logic Framework

• CIC-- (Calculus of Inductive Constructions)

• - Fixpoint/Match

• + Recursors

• Coquand and Paulin-Mohring’s Calculus of Inductive Constructions 1988

• Inductive families (P. Dybjer)

• Universe polymorphism

• Proof irrelevance

Inductive Families

Recursive equations

• Recursors are inconvenient to use.

• Compiler from recursive equations to recursors.

• Several compilation strategies: structural, well-founded, unbounded
recursion, …

Recursive equations

Mutual recursion

Structures

Type classes

Metaprogramming

Reflecting expressions

Quotations

The tactic monad

tactics

An example

Suppose we try to simplify the target using the axiom fax and the hypotheses above

rsimp tactic

An example

Extending the tactic state

• 2200 lines of code

Superposition prover

dlist

transfer tactic

• Developed by Johannes Hölzl (approx. 200 lines of code)

• Q

• We also use it to transfer results from nat to int.

Lean to SMT2

 Lean

 LOL

 SMT2

lemma n_gt_0
(a : nat) : a >= 0 :=
by z3

decl n : int {n >= 0}
assert (not (n >= 0))

(declare-const n Int)
(assert (>= n 0))
(assert (not (>= n 0))

• Goal: translate a Lean local
context, and goal into SMT2
query.
• Recognize fragment and

translate to low-order logic
(LOL).
• Logic supports some higher

order features, is successively
lowered to FOL, finally SMT2.

mutual inductive type, term
with type : Type
| bool : type
| int : type
| var : string → type
| fn : list type → type → type
| refinement : type → (string → term) → type
with term : Type
| apply : string → list term → term
| true : term
| false : term
| var : string → term
| equals : term → term → term
| …
| forallq : string → type → term → term

meta structure context :=
(type_decl : rb_map string type)
(decls : rb_map string decl)
(assertions : list term)

meta def reflect_prop_formula' : expr → smt2_m lol.term
| `(¬ %%P) := lol.term.not <$> (reflect_prop_formula' P)
| `(%%P = %%Q) := lol.term.equals <$>
 (reflect_prop_formula' P) <*>
 (reflect_prop_formula' Q)
| `(%%P ∧ %%Q) := lol.term.and <$>
 (reflect_prop_formula' P) <*>
 (reflect_prop_formula' Q)
| `(%%P ∨ %%Q) := lol.term.or <$>
 (reflect_prop_formula' P) <*>
 (reflect_prop_formula' Q)
| `(%%P < %%Q) := reflect_ordering lol.term.lt P Q
| …
| `(true) := return $ lol.term.true
| `(false) := return $ lol.term.false
| e := …

Coinductive predicates

• Developed by Johannes Hölzl (approx. 800 lines of code)

• Uses impredicativity of Prop

• No kernel extension is needed

simple expression language

nano crush

simple expression language

Development support

• Profiler

• Based on sampling

• Useful for finding performance bottleneck in tactics

• Debugger based on VM monitor

• User can write VM monitors in Lean

• CLI debugger is implemented in Lean

• IDE support is on the TODO list

vm monitor

Conclusion

• Users can create their on automation, extend and customize Lean

• Domain specific automation

• Internal data structures and procedures are exposed to users (e.g.,
congruence closure)

• Whitebox automation

• We are going to expose more

• Structured trace messages

• More powerful parser and pretty printing extensions

• Code generator extensions

• …

