
Lean 4
Leonardo de Moura - MSR - USA       Sebastian Ullrich - KIT - Germany

Programming Language
http://leanprover.github.io 

http://leanprover.github.io


• Goals


• Extensibility, Expressivity, Scalability, Proof stability


• Functional Programming (efficiency)


• Platform for


• Developing custom automation and domain specific languages (DSLs)


• Software verification


• Formalized Mathematics


• Dependent Type Theory


• de Bruijn’s principle: small trusted kernel, external proof/type checkers 

Programming Language



Resources

• Website: http://leanprover.github.io


• Online tutorial: https://leanprover.github.io/theorem_proving_in_lean/


• Zulip channel: https://leanprover.zulipchat.com/


• Community website: https://leanprover-community.github.io/


• Maintainers of the official release (Lean 3)


• Mathlib: https://leanprover-community.github.io/mathlib-overview.html


• Lean 4 repository: https://github.com/leanprover/lean4

Programming Language

http://leanprover.github.io
https://leanprover.github.io/theorem_proving_in_lean/
https://leanprover.zulipchat.com/
https://leanprover-community.github.io/
https://leanprover-community.github.io/mathlib-overview.html
https://github.com/leanprover/lean4


Mathlib
The Lean mathematical library, mathlib, is a community-driven effort to build 
a unified library of mathematics formalized in the Lean prover.


Jeremy Avigad, Reid Barton, Mario Carneiro, …

https://leanprover-community.github.io/meet.html


Paper: https://arxiv.org/abs/1910.09336


https://leanprover-community.github.io/meet.html
https://arxiv.org/abs/1910.09336


Extensibility
Lean 3 users extend Lean using Lean


Examples:

• Ring Solver, Coinductive predicates, Transfer tactic,

• Superposition prover, Linters,

• Fourier-Motzkin & Omega, 

• Many more


• Access Lean internals using Lean

• Type inference, Unifier, Simplifier, Decision procedures, 

• Type class resolution, …



Applications

IMO Grand Challenge

VU Amsterdam

Daniel Selsam, MSR

Tom Hales, University of Pittsburgh


Jesse Michael Han, Floris Van Doorn 



Other applications
• Certigrad, Daniel Selsam, Stanford


• IVy metatheory, Ken McMillan, MSR Redmond


• AliveInLean, Nuno Lopes, MSR Cambridge


• Protocol Verification, Galois Inc


• SQL Query Verification, Univ. Washington 


• Education


• Introduction to Logic (CMU), Type theory (CMU), Introduction to Proof (Imperial College),


• Software verification and Logic (VU Amsterdam)


• Programming Languages (UW)


• 6 papers at ITP 2019 



Lean 3.x limitations
• Lean programs are compiled into byte code and then interpreted (slow).


• Lean expressions are foreign objects reflected in Lean.


• Very limited ways to extend the parser.


• Users cannot implement their own elaboration strategies.


• Trace messages are just strings.



Lean 4
• Implement Lean in Lean


• Parser, elaborator, compiler, tactics and formatter.

• Hygienic macro system.

• Structured trace messages.

• Only the runtime and basic primitives are implemented in C/C++.


• Foreign function interface.


• Runtime has support for boxed and unboxed data.


• Runtime uses reference counting for GC and performs destructive updates when RC = 1.


• Compiler generates C code. We can mix byte code and compiled code.


• (Safe) support for low-level tricks such as pointer equality.


• A better value proposition: use proofs for obtaining more efficient code.



Lean 4 is being implemented in Lean



Lean 4 is being implemented in Lean



Beyond CIC

• In CIC, all functions are total, but to implement Lean in Lean, we want


• General recursion.


• Foreign functions.


• Unsafe features (e.g., pointer equality).



The unsafe keyword

• Unsafe functions may not terminate.


• Unsafe functions may use (unsafe) type casting.


• Regular (non unsafe) functions cannot call unsafe functions.


• Theorems are regular (non unsafe) functions. 



A Compromise
• Make sure we cannot prove False in Lean.


• Theorems proved in Lean 4 may still be checked by reference checkers.


• Unsafe functions are ignored by reference checkers.


• Allow developers to provide an unsafe version for any (opaque) function whose type is inhabited.


• Examples:


• Primitives implemented in C


• Sealing unsafe features




The partial keyword
• General recursion is a major convenience. 


• Some functions in our implementation may not terminate or cannot be shown to 
terminate in Lean, and we want to avoid an artificial “fuel" argument.


• In many cases, the function terminates, but we don’t want to “waste" time 
proving it.


• A partial definition is just syntax sugar for the unsafe + implementedBy idiom.


• Future work: allow users to provide termination later, and use meta programming 
to generate a safe and non-opaque version of a partial function.



Proofs for performance and profit

• A better value proposition: use proofs for obtaining more efficient code.

• Example: skip runtime array bounds checks


• Example: pointer equality 
 



The return of reference counting 
• Most compilers for functional languages (OCaml, GHC, …) use tracing GC 


• RC is simple to implement.


• Easy to support multi-threading programs.


• Destructive updates when reference count = 1. 

• It is a known optimization for big objects (e.g., arrays).

• We demonstrate it is also relevant for small objects. 


• In languages like Coq and Lean, we do not have cycles.


• Easy to interface with C, C++ and Rust.


Paper: "Counting Immutable Beans: Reference Counting Optimized for Purely Functional Programming”, IFL 2019

https://arxiv.org/abs/1908.05647


Resurrection hypothesis

Many objects die just before the creation of an 
object of the same kind. 

Examples:


• List.map : List a -> (a -> b) -> List b


• Compiler applies transformations to expressions.


• Proof assistant rewrites/simplifies formulas.


• Updates to functional data structures such as red black trees.


• List zipper




New idioms
structure ParserState :=

(stxStack  : Array Syntax)

(pos          : String.Pos)

(cache      : ParserCache)

(errorMsg : Option Error)


def pushSyntax (s : ParserState) (n : Syntax) : ParserState :=

{ s with stxStack := s.stxStack.push n }


def mkNode (s : ParserState) (k : SyntaxNodeKind) (iniStackSz : Nat) : ParserState :=

match s with

| ⟨stack, pos, cache, err⟩ =>

   let newNode := Syntax.node k (stack.extract iniStackSz stack.size);

   let stack   := stack.shrink iniStackSz;

   let stack   := stack.push newNode;

   ⟨stack, pos, cache, err⟩




Conclusion
• We are implementing Lean4 in Lean.


• Users will be able and customize all modules of the system.


• Sealing unsafe features. Logical consistency is preserved.


• Compiler generates C code. Allows users to mix compiled and interpreted code.


• It is feasible to implement functional languages using RC.


• We barely scratched the surface of the design space.


• Source code available online. http://github.com/leanprover/lean4

http://github.com/leanprover/lean4

