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Lean is a platform for software verification  
and formalized mathematics



Goals

• Proof stability


• Extensibility


• Expressivity - Dependent Type Theory


• Scalability


• de Bruijn’s principle: small trusted kernel, and 2 external type checkers


	 “Hack without fear”



Motivation: automated provers @ Microsoft

Testing Software Verification 

Alive Ivy



Software verification & automated provers

• Easy to use for simple properties


• Main problems:

• Scalability issues

• Proof stability

• Hard to control the behavior of automated provers


• in many verification projects:

• Hyper-V

• Ironclad & Ironfleet (https://github.com/Microsoft/Ironclad)

• Everest (https://project-everest.github.io/)

https://github.com/Microsoft/Ironclad
https://project-everest.github.io/


Extend Lean using Lean 

Metaprogramming

Domain specific automation

Domain specific languages



Whitebox automation 

Access Lean internals using Lean

Simplifiers, decision procedures, type class resolution, 

type inference, unifiers, matchers,  …



Applications

• IVy Metatheory (Ken McMillan - MSR Redmond) 

• AliveInLean (Nuno Lopes - MSR Cambridge) 

• Protocol Verification (Joe Hendrix, Joey Dodds, Ben Sherman, Ledah 
Casburn, Simon Hudon - Galois) 

• Verified Machine Learning (Daniel Selsam - Stanford) 

• SQL query equivalence (Shumo Chu et al - UW) 



Applications (cont.)

• FormalAbstracts (Tom Hales - University of Pittsburgh)  

• Lean Forward, Number Theory (Jasmin Blanchette - Vrije Universiteit) 

• Mathlib (Mario Carneiro - CMU and Johannes Hölzl - Vrije Universiteit)  

• Teaching 
• Logic and Automated Reasoning (Jeremy Avigad - CMU) 
• Programming Languages (Zach Tatlock - UW) 
• Foundations of Analysis (Kevin Buzzard - Imperial College) 



Alive 

<Input>

Encode 
Semantics

Verification 
Condition

VCGen

OK

BUG

Pre: isPowerOf2(C)
%s = shl C, %N
%q = zext %s
%r = udiv %x, %q

  =>

%N2 = add %N, log2(C)
%N3 = zext %N2
%r  = lshr %x, %N3

Nuno Lopes, MSR Cambridge

Re-implementation of Alive in Lean 
Open source: https://github.com/Microsoft/AliveInLean 
Pending issues: 
• Using processes+pipes to communicate with Z3  
• Simpler framework for specifying LLVM instructions

https://github.com/Microsoft/AliveInLean


Lean Demo



Writing metaprograms/tactics/automation in Lean



Metaprogramming example



Reflecting expressions



Quotations



The tactic monad



Extending the tactic state



• 2200 lines of code

Superposition prover



dlist



transfer tactic

• Developed by Johannes Hölzl (approx. 200 lines of code)


• Q 

• We also use it to transfer results from nat to int.



Lean to SMT2

     Lean

      LOL

    SMT2

lemma n_gt_0
(a : nat) : a >= 0 :=
by z3

decl n : int {n >= 0}
assert (not (n >= 0))

(declare-const n Int)
(assert (>= n 0))
(assert (not (>= n 0))

• Goal: translate a Lean local 
context, and goal into SMT2 
query. 

• Recognize fragment and 
translate to low-order logic 
(LOL). 

• Logic supports some higher 
order features, is successively 
lowered to FOL, finally SMT2.



mutual inductive type, term
with type : Type
| bool : type
| int : type
| var : string → type
| fn : list type → type → type
| refinement : type → (string → term) → type
with term : Type
| apply : string → list term → term
| true : term
| false : term
| var : string → term
| equals : term → term → term
| …
| forallq : string → type → term → term

meta structure context :=
(type_decl : rb_map string type)
(decls : rb_map string decl)
(assertions : list term)



meta def reflect_prop_formula' : expr → smt2_m lol.term
| `(¬ %%P) := lol.term.not <$> (reflect_prop_formula' P)
| `(%%P = %%Q) := lol.term.equals <$> 
                  (reflect_prop_formula' P) <*> 
                  (reflect_prop_formula' Q)
| `(%%P ∧ %%Q) := lol.term.and <$> 
                  (reflect_prop_formula' P) <*> 
                  (reflect_prop_formula' Q)
| `(%%P ∨ %%Q) := lol.term.or <$> 
                  (reflect_prop_formula' P) <*> 
                  (reflect_prop_formula' Q)
| `(%%P < %%Q) := reflect_ordering lol.term.lt P Q
| … 
| `(true) := return $ lol.term.true
| `(false) := return $ lol.term.false
| e := …



Coinductive predicates

• Developed by Johannes Hölzl (approx. 800 lines of code)


• Uses impredicativity of Prop


• No kernel extension is needed



Ring solver

• Developed by Mario Carneiro (approx. 500 lines of code)


• https://github.com/leanprover/mathlib/blob/master/tactic/ring.lean


• ring2 uses computational reflection 

https://github.com/leanprover/mathlib/blob/master/tactic/ring.lean


Fourier-Motzkin elimination

• Linear arithmetic inequalities

• Developed here

• https://github.com/GaloisInc/lean-protocol-support/tree/master/

galois/arith

https://github.com/GaloisInc/lean-protocol-support/tree/master/galois/arith
https://github.com/GaloisInc/lean-protocol-support/tree/master/galois/arith


Lean 3.x limitations

• Lean programs are compiled into byte code 


• Lean expressions are foreign objects in the Lean VM


• Very limited ways to extend the parser


• Users cannot implement their own elaboration strategies


• Users cannot extend the equation compiler (e.g., support for quotient 
types)



Lean 4

• Leo and Sebastian Ullrich (and soon Gabriel Ebner)


• Implement Lean in Lean 


• parser, elaborator, equation compiler, code generator, tactic 
framework and formatter


• New intermediate representation (defined in Lean) can be 
translated into C++ (and LLVM IR)


• Only runtime, kernel and basic primitives are implemented in C++


• Users may want to try to prove parts of the Lean code generator or 
implement their own kernel in Lean


• Foreign function interface (invoke external tools)



Lean 4 architecture

Runtime / Interpreter

Kernel

Elaboration primitives

Tactic Framework

Equation Compiler

Compiler

Parser & Macro Expander

Server

IR

C / LLVM backends

VS Code & Emacs

Elaborator



Parser
• Implemented in Lean 

• Fully extensible 
• Design your own domain specific language 
• Error recovery, documentation, printer, …  for free



Syntax Objects

Macros can be expanded and/or elaborated. 
Users can define new readers and macros. 



Kernel expressions

Elaborator converts syntax objects into expressions. 



Compiler - code generator

• Implemented Lean


• External contributors can prove the new compiler is 
correct


• Code specialization and monomorphization


• Target is the new IR also defined in Lean 


• Users can select theorems as optimization rules



Runtime
Strict, GC based on reference counting, destructive updates for unshared objects, 
support for unboxed values.



Code generation hints

• Support for low-level tricks used in SMT and ATP. 
Example: pointer equality


def use_ptr_eq {α : Type u} {a b : α} 
               (c : unit -> {r : bool // a = b → r = tt}) 
               : {r : bool // a = b → r = tt} := 
c () 

Given @use_ptr_eq _ a b c, compiler generates

if (addr_of(a) == addr_of(b)) return true;  
else return c();



Structured trace messages
• Why did my tactic/solver fail?


• Lean 3 has support for trace messages, but they are just a bunch of strings.


• Lean 4 will provide structured trace messages and APIs for browsing them.


• Traces will be generated on demand (improved discoverability).



Better support for proofs by reflection
• Define an inductive datatype (form) that captures a class of formulas. 

• Implement a decision procedure dec_proc for this class. 

• Prove: ∀ (s : form) ctx, dec_proc s = tt ! denote s ctx 

• The type checker has to reduce (dec_proc s). This is too inefficient in Lean 3. 

• In Lean 4, we allow users to use the compiler + IR interpreter to reduce 
(dec_proc s). 

• We still need to use the symbolic reduction engine to show that the current goal 
and (denote s ctx) are definitionally equal.  

• Disadvantages: increases the size of the TCB, external type checkers will 
probably timeout in proofs using this feature.



New application scenarios



Automated reasoning framework 
• Many users use Python + SMT solver to developing automated reasoning engines 

(e.g., Alive is implemented in Z3Py). 

• Lean 3 interpreter is already faster than Python. 

• FFI in Lean 4 will provide (efficient) access to external SAT & SMT solvers and ATP. 

• Many goodies not available in the Python + SMT framework: 

• Simplifiers. 

• Efficient symbolic simulation. 

• Custom automation. 

• Parsing framework + integration with IDEs (VS Code, Emacs).



Domain Specific Languages 

• Users can define and reason about their DSLs. 

• Code reuse: 

• Compiler infrastructure. 

• Parsing framework. 

• Elaborator. 

• IDE integration.



Lean as a general purpose programming language

• Lean is an extensible system: parser, elaborator, compiler, etc. 

• User certified optimizations as conditional rewriting rules. 

• New backends for the Lean 4 IR can be implemented in Lean. 

• Foreign function interface. 

• leanpkg - package management tool implemented in Lean.



Conclusion

• Users can create their on automation, extend and customize Lean


• Domain specific automation


• Internal data structures and procedures are exposed to users


• Whitebox automation


• Lean 4 automation written in Lean will be much more efficient


• Lean 4 will be more extensible


• New application domains


• Lean 4 as a more powerful Z3Py


• Lean 4 as a platform for developing domain specific languages


