
past, present and future
Galois Inc., Oregon, August 2018

Leonardo de Moura

Microsoft Research

https://leanprover.github.io

https://leanprover.github.io/papers/tactic.pdf

Lean is a platform for software verification
and formalized mathematics

Goals

• Proof stability

• Extensibility

• Expressivity - Dependent Type Theory

• Scalability

• de Bruijn’s principle: small trusted kernel, and 2 external type checkers

	 “Hack without fear”

Motivation: automated provers @ Microsoft

Testing Software Verification

Alive Ivy

Software verification & automated provers

• Easy to use for simple properties

• Main problems:

• Scalability issues

• Proof stability

• Hard to control the behavior of automated provers

• in many verification projects:

• Hyper-V

• Ironclad & Ironfleet (https://github.com/Microsoft/Ironclad)

• Everest (https://project-everest.github.io/)

https://github.com/Microsoft/Ironclad
https://project-everest.github.io/

Extend Lean using Lean

Metaprogramming

Domain specific automation

Domain specific languages

Whitebox automation

Access Lean internals using Lean

Simplifiers, decision procedures, type class resolution,

type inference, unifiers, matchers, …

Applications

• IVy Metatheory (Ken McMillan - MSR Redmond)

• AliveInLean (Nuno Lopes - MSR Cambridge)

• Protocol Verification (Joe Hendrix, Joey Dodds, Ben Sherman, Ledah
Casburn, Simon Hudon - Galois)

• Verified Machine Learning (Daniel Selsam - Stanford)

• SQL query equivalence (Shumo Chu et al - UW)

Applications (cont.)

• FormalAbstracts (Tom Hales - University of Pittsburgh)

• Lean Forward, Number Theory (Jasmin Blanchette - Vrije Universiteit)

• Mathlib (Mario Carneiro - CMU and Johannes Hölzl - Vrije Universiteit)

• Teaching
• Logic and Automated Reasoning (Jeremy Avigad - CMU)
• Programming Languages (Zach Tatlock - UW)
• Foundations of Analysis (Kevin Buzzard - Imperial College)

Alive

<Input>

Encode
Semantics

Verification 
Condition

VCGen

OK

BUG

Pre: isPowerOf2(C)
%s = shl C, %N
%q = zext %s
%r = udiv %x, %q

 =>

%N2 = add %N, log2(C)
%N3 = zext %N2
%r = lshr %x, %N3

Nuno Lopes, MSR Cambridge

Re-implementation of Alive in Lean
Open source: https://github.com/Microsoft/AliveInLean
Pending issues:
• Using processes+pipes to communicate with Z3
• Simpler framework for specifying LLVM instructions

https://github.com/Microsoft/AliveInLean

Lean Demo

Writing metaprograms/tactics/automation in Lean

Metaprogramming example

Reflecting expressions

Quotations

The tactic monad

Extending the tactic state

• 2200 lines of code

Superposition prover

dlist

transfer tactic

• Developed by Johannes Hölzl (approx. 200 lines of code)

• Q

• We also use it to transfer results from nat to int.

Lean to SMT2

 Lean

 LOL

 SMT2

lemma n_gt_0
(a : nat) : a >= 0 :=
by z3

decl n : int {n >= 0}
assert (not (n >= 0))

(declare-const n Int)
(assert (>= n 0))
(assert (not (>= n 0))

• Goal: translate a Lean local
context, and goal into SMT2
query.

• Recognize fragment and
translate to low-order logic
(LOL).

• Logic supports some higher
order features, is successively
lowered to FOL, finally SMT2.

mutual inductive type, term
with type : Type
| bool : type
| int : type
| var : string → type
| fn : list type → type → type
| refinement : type → (string → term) → type
with term : Type
| apply : string → list term → term
| true : term
| false : term
| var : string → term
| equals : term → term → term
| …
| forallq : string → type → term → term

meta structure context :=
(type_decl : rb_map string type)
(decls : rb_map string decl)
(assertions : list term)

meta def reflect_prop_formula' : expr → smt2_m lol.term
| `(¬ %%P) := lol.term.not <$> (reflect_prop_formula' P)
| `(%%P = %%Q) := lol.term.equals <$>
 (reflect_prop_formula' P) <*>
 (reflect_prop_formula' Q)
| `(%%P ∧ %%Q) := lol.term.and <$>
 (reflect_prop_formula' P) <*>
 (reflect_prop_formula' Q)
| `(%%P ∨ %%Q) := lol.term.or <$>
 (reflect_prop_formula' P) <*>
 (reflect_prop_formula' Q)
| `(%%P < %%Q) := reflect_ordering lol.term.lt P Q
| …
| `(true) := return $ lol.term.true
| `(false) := return $ lol.term.false
| e := …

Coinductive predicates

• Developed by Johannes Hölzl (approx. 800 lines of code)

• Uses impredicativity of Prop

• No kernel extension is needed

Ring solver

• Developed by Mario Carneiro (approx. 500 lines of code)

• https://github.com/leanprover/mathlib/blob/master/tactic/ring.lean

• ring2 uses computational reflection

https://github.com/leanprover/mathlib/blob/master/tactic/ring.lean

Fourier-Motzkin elimination

• Linear arithmetic inequalities

• Developed here

• https://github.com/GaloisInc/lean-protocol-support/tree/master/

galois/arith

https://github.com/GaloisInc/lean-protocol-support/tree/master/galois/arith
https://github.com/GaloisInc/lean-protocol-support/tree/master/galois/arith

Lean 3.x limitations

• Lean programs are compiled into byte code

• Lean expressions are foreign objects in the Lean VM

• Very limited ways to extend the parser

• Users cannot implement their own elaboration strategies

• Users cannot extend the equation compiler (e.g., support for quotient
types)

Lean 4

• Leo and Sebastian Ullrich (and soon Gabriel Ebner)

• Implement Lean in Lean

• parser, elaborator, equation compiler, code generator, tactic
framework and formatter

• New intermediate representation (defined in Lean) can be
translated into C++ (and LLVM IR)

• Only runtime, kernel and basic primitives are implemented in C++

• Users may want to try to prove parts of the Lean code generator or
implement their own kernel in Lean

• Foreign function interface (invoke external tools)

Lean 4 architecture

Runtime / Interpreter

Kernel

Elaboration primitives

Tactic Framework

Equation Compiler

Compiler

Parser & Macro Expander

Server

IR

C / LLVM backends

VS Code & Emacs

Elaborator

Parser
• Implemented in Lean

• Fully extensible
• Design your own domain specific language
• Error recovery, documentation, printer, … for free

Syntax Objects

Macros can be expanded and/or elaborated.
Users can define new readers and macros.

Kernel expressions

Elaborator converts syntax objects into expressions.

Compiler - code generator

• Implemented Lean

• External contributors can prove the new compiler is
correct

• Code specialization and monomorphization

• Target is the new IR also defined in Lean

• Users can select theorems as optimization rules

Runtime
Strict, GC based on reference counting, destructive updates for unshared objects,
support for unboxed values.

Code generation hints

• Support for low-level tricks used in SMT and ATP.
Example: pointer equality

def use_ptr_eq {α : Type u} {a b : α}
 (c : unit -> {r : bool // a = b → r = tt})
 : {r : bool // a = b → r = tt} :=
c ()

Given @use_ptr_eq _ a b c, compiler generates

if (addr_of(a) == addr_of(b)) return true;
else return c();

Structured trace messages
• Why did my tactic/solver fail?

• Lean 3 has support for trace messages, but they are just a bunch of strings.

• Lean 4 will provide structured trace messages and APIs for browsing them.

• Traces will be generated on demand (improved discoverability).

Better support for proofs by reflection
• Define an inductive datatype (form) that captures a class of formulas.

• Implement a decision procedure dec_proc for this class.

• Prove: ∀ (s : form) ctx, dec_proc s = tt ! denote s ctx

• The type checker has to reduce (dec_proc s). This is too inefficient in Lean 3.

• In Lean 4, we allow users to use the compiler + IR interpreter to reduce
(dec_proc s).

• We still need to use the symbolic reduction engine to show that the current goal
and (denote s ctx) are definitionally equal.

• Disadvantages: increases the size of the TCB, external type checkers will
probably timeout in proofs using this feature.

New application scenarios

Automated reasoning framework
• Many users use Python + SMT solver to developing automated reasoning engines

(e.g., Alive is implemented in Z3Py).

• Lean 3 interpreter is already faster than Python.

• FFI in Lean 4 will provide (efficient) access to external SAT & SMT solvers and ATP.

• Many goodies not available in the Python + SMT framework:

• Simplifiers.

• Efficient symbolic simulation.

• Custom automation.

• Parsing framework + integration with IDEs (VS Code, Emacs).

Domain Specific Languages

• Users can define and reason about their DSLs.

• Code reuse:

• Compiler infrastructure.

• Parsing framework.

• Elaborator.

• IDE integration.

Lean as a general purpose programming language

• Lean is an extensible system: parser, elaborator, compiler, etc.

• User certified optimizations as conditional rewriting rules.

• New backends for the Lean 4 IR can be implemented in Lean.

• Foreign function interface.

• leanpkg - package management tool implemented in Lean.

Conclusion

• Users can create their on automation, extend and customize Lean

• Domain specific automation

• Internal data structures and procedures are exposed to users

• Whitebox automation

• Lean 4 automation written in Lean will be much more efficient

• Lean 4 will be more extensible

• New application domains

• Lean 4 as a more powerful Z3Py

• Lean 4 as a platform for developing domain specific languages

