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Inspiration



What to Measure
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1. Full rebuild
● easy to measure, continously
● CI worst-case
● time (+ parallelism), memory, disk

2. Incremental build
● local/CI common case
● average over last N commits?

3. UI latency of specific action
● load Mathlib, edit single proof, …
● specific benchmark per action



Status Quo

Continuous benchmarking of each lean4 & mathlib4 commit
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speed.lean-lang.org

http://speed.lean-lang.org/


Status Quo

Continuous benchmarking of each lean4 & mathlib4 commit
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● full build with --profile
● compiler microbenchmarks
● import Lean, lake env,

match reduction, workspace 
symbols

● full build with --profile
● per-file instruction counts

(8B instrs ≈ 1s)
● import Mathlib



Benchmarking Pipeline

1. Temci, an unmaintained benchmarking cmdline tool (Python)
● lean4/tests/bench/speedcenter.exec.velcom.yaml
● mathlib4/scripts/bench/temci-config.run.yml

2. VelCom, an unmaintained benchmark runner & visualizer (Java/TypeScript)
3. A bit of shell glue code

● Kha/lean-bench
● Kha/mathlib4-bench
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https://github.com/leanprover/lean4/blob/master/tests/bench/speedcenter.exec.velcom.yaml
https://github.com/leanprover-community/mathlib4/blob/master/scripts/bench/temci-config.run.yml
https://github.com/Kha/lean-bench
https://github.com/Kha/mathlib4-bench


The Mathlib Port: lines & build time
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speed.lean-fro.org/mathlib4

http://speed.lean-fro.org/mathlib4


The Mathlib Port: Breakdown into Categories
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45% typeclass inference

16% other tactics

11% simplifier
13% interpretation

, other elab

 5% import, compilation
 4% kernel
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https://github.com/leanprover/lean4/pull/2003
https://github.com/leanprover/lean4/pull/2151
https://github.com/leanprover/lean4/pull/2210
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Performance: Before (Lean 3) and After (Lean 4)
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On a Ryzen 9 (32 threads):

Total build time: 48 min ~> 21 min (-55%)
Single-core time: 23 hours ~> 5 hours (-77%)
Typeclass inference: 3 hours ~> 1 hour 46 min (-42%)



Performance: Importing Mathlib

disk: 436 MB ~> 3.1 GB (+711%)
time: 10.6 s ~> 1.5 s (-86%)
allocations: 4.6 GB ~> 243 MB (-95%)

due to zero-cost deserialization via memory mapping

3.1 GB disk compressed down to 200 MB on the wire via digama0/leangz
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https://github.com/digama0/leangz


New profiling tools

trace.profiler prints a structured profile

hargoniX/Flame converts it into a flame graph
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https://github.com/hargoniX/Flame


On the FRO Roadmap
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1. Full rebuild
● #5 Elaboration efficiency, especially parallelism

2. Incremental build
● #9 Reservoir Package Registry
● #11 Module System

3. UI latency of specific action
● #5 Elaboration efficiency: incrementality

lean-fro.org/about/roadmap

https://lean-fro.org/about/roadmap/


[demo]
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Conclusion
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We have a solid benchmarking setup in some areas, less so in others. Help 
welcome!

The move to Lean 4 has yielded unprecedented performance improvements, and 
we will continue to work both on improvements to existing components and on 
exciting new possibilities.


