
Are We Fast Yet
Sebastian Ullrich (Lean FRO)

lean-lang.org/publications/

https://leanprover.github.io/publications/


2

Inspiration



What to Measure

3

1. Full rebuild
● easy to measure, continously
● CI worst-case
● time (+ parallelism), memory, disk

2. Incremental build
● local/CI common case
● average over last N commits?

3. UI latency of specific action
● load Mathlib, edit single proof, …
● specific benchmark per action



Status Quo

Continuous benchmarking of each lean4 & mathlib4 commit

4

speed.lean-lang.org

http://speed.lean-lang.org/


Status Quo

Continuous benchmarking of each lean4 & mathlib4 commit

5

● full build with --profile
● compiler microbenchmarks
● import Lean, lake env,

match reduction, workspace 
symbols

● full build with --profile
● per-file instruction counts

(8B instrs ≈ 1s)
● import Mathlib



Benchmarking Pipeline

1. Temci, an unmaintained benchmarking cmdline tool (Python)
● lean4/tests/bench/speedcenter.exec.velcom.yaml
● mathlib4/scripts/bench/temci-config.run.yml

2. VelCom, an unmaintained benchmark runner & visualizer (Java/TypeScript)
3. A bit of shell glue code

● Kha/lean-bench
● Kha/mathlib4-bench

6

https://github.com/leanprover/lean4/blob/master/tests/bench/speedcenter.exec.velcom.yaml
https://github.com/leanprover-community/mathlib4/blob/master/scripts/bench/temci-config.run.yml
https://github.com/Kha/lean-bench
https://github.com/Kha/mathlib4-bench


The Mathlib Port: lines & build time

7
speed.lean-fro.org/mathlib4

http://speed.lean-fro.org/mathlib4


The Mathlib Port: Breakdown into Categories

8

45% typeclass inference

16% other tactics

11% simplifier
13% interpretation

, other elab

 5% import, compilation
 4% kernel

#2
00

3 
-2

5%
 e

ag
er

ly
 re

du
ce

 p
ro

je
ct

io
ns

 d
ur

in
g 

un
ifi

ca
tio

n

#2
15

1 
-1

5%
 s

ca
le

 E
xp

r.r
ep

la
ce

 c
ac

he
 w

ith
 in

pu
t s

iz
e

#2
21

0 
-2

0%
 s

ki
p 

pr
oo

f a
rg

s 
du

rin
g 

un
ifi

ca
tio

n

 0.2% parsing

ni
gh

tly
-2

02
3-

07
-0

1 
-4

%

https://github.com/leanprover/lean4/pull/2003
https://github.com/leanprover/lean4/pull/2151
https://github.com/leanprover/lean4/pull/2210


State Jan 2024

9i5-8500 | Ryzen 9 7950X3D

v4
.3

.0
-r

c2
 -8

%



Performance: Before (Lean 3) and After (Lean 4)

10

On a Ryzen 9 (32 threads):

Total build time: 48 min ~> 21 min (-55%)
Single-core time: 23 hours ~> 5 hours (-77%)
Typeclass inference: 3 hours ~> 1 hour 46 min (-42%)



Performance: Importing Mathlib

disk: 436 MB ~> 3.1 GB (+711%)
time: 10.6 s ~> 1.5 s (-86%)
allocations: 4.6 GB ~> 243 MB (-95%)

due to zero-cost deserialization via memory mapping

3.1 GB disk compressed down to 200 MB on the wire via digama0/leangz

11

https://github.com/digama0/leangz


New profiling tools

trace.profiler prints a structured profile

hargoniX/Flame converts it into a flame graph

12

https://github.com/hargoniX/Flame


On the FRO Roadmap

13

1. Full rebuild
● #5 Elaboration efficiency, especially parallelism

2. Incremental build
● #9 Reservoir Package Registry
● #11 Module System

3. UI latency of specific action
● #5 Elaboration efficiency: incrementality

lean-fro.org/about/roadmap

https://lean-fro.org/about/roadmap/


[demo]

14



Conclusion

15

We have a solid benchmarking setup in some areas, less so in others. Help 
welcome!

The move to Lean 4 has yielded unprecedented performance improvements, and 
we will continue to work both on improvements to existing components and on 
exciting new possibilities.


