
White-box Automation
ITP - Brasilia - September 26, 2017

Leonardo de Moura - Microsoft Research

joint work with
Gabriel Ebner - Vienna University of Technology

Sebastian Ullrich - Karlsruhe Institute of Technology

Jared Roesch - University of Washington

Jeremy Avigad - Carnegie Mellon University

https://leanprover.github.io/papers/tactic.pdf

https://leanprover.github.io/papers/tactic.pdf

The Lean team

• Everybody in the previous slide, and

• Mario Carneiro (CMU),

• Johannes Hölzl (CMU),

• Floris van Doorn (CMU),

• Rob Lewis (CMU),

• Daniel Selsam (Stanford)

Former Members:

• Soonho Kong (CMU),

• Jakob von Raumer (University of Nottingham)

http://von-raumer.de/

Many thanks to

• Cody Roux

• Georges Gonthier

• Grant Passmore

• Nikhil Swamy

• Assia Mahboubi	

• Bas Spitters 	

• Steve Awodey

• Ulrik Buchholtz 	

• Tom Ball

• David Christiansen

Lean aims to bridge the gap between interactive
and automated theorem proving

How are automated provers used at Microsoft?

Testing Software Verification

Software verification & automated provers

• Easy to use for simple properties

• Main problems:

• Scalability issues

• Proof stability

• in many verification projects:

• Hyper-V

• Ironclad & Ironfleet (https://github.com/Microsoft/Ironclad)

• Everest (https://project-everest.github.io/)

https://github.com/Microsoft/Ironclad
https://project-everest.github.io/

Automated provers are mostly black-boxes

“The Strategy Challenge in SMT Solving”, joint work with
Grant Passmore

Introduction: Lean

• New open source theorem prover (and programming language)

Soonho Kong and I started coding in the Fall of 2013

• Platform for

• Software verification

• Formalized Mathematics

• de Bruijn’s principle: small trusted kernel

• Dependent Type Theory

• Metaprogramming

• First official version was released at CADE 2015.

Metaprogramming

• Extend Lean using Lean

• Access Lean internals using Lean

• Type inference

• Unifier

• Simplifier

• Decision procedures

• Type class resolution

• …

• Proof/Program synthesis

White-box automation

APIs (in Lean) for accessing data-structures and procedures
found in SMT solvers and ATPs.

The Logic Framework

• CIC-- (Calculus of Inductive Constructions)

• - Fixpoint/Match

• + Recursors

• Coquand and Paulin-Mohring’s Calculus of Inductive Constructions 1988

• Inductive families (P. Dybjer)

• Universe polymorphism

• Proof irrelevance

Inductive Families

Recursive equations

• Recursors are inconvenient to use.

• Compiler from recursive equations to recursors.

• Several compilation strategies: structural, well-founded, unbounded
recursion, …

Recursive equations

Mutual recursion

Structures

Type classes

Metaprogramming

Reflecting expressions

Quotations

The tactic monad

tactics

Example: congruence closure

• It is the kernel of most SMT solvers (e.g., CVC4, MathSAT, Yices and Z3).

• Efficient procedure for equality.

Example: congruence closure

Example: congruence closure

Example: congruence closure

Example: congruence closure

Example: congruence closure

Example: congruence closure

Example: congruence closure

Example: congruence closure

Example: congruence closure

Example: congruence closure

Example: congruence closure

Example: congruence closure

Example: congruence closure

Example: congruence closure

rsimp tactic

Suppose we try to simplify the target using the axiom fax and the hypotheses above

b

rsimp tactic

An example

Extending the tactic state

• 2200 lines of code

Superposition prover

dlist

transfer tactic

• Developed by Johannes Hölzl (approx. 200 lines of code)

• Q

• We also use it to transfer results from nat to int.

Lean to SMT2

 Lean

 LOL

 SMT2

lemma n_gt_0
(a : nat) : a >= 0 :=
by z3

decl n : int {n >= 0}
assert (not (n >= 0))

(declare-const n Int)
(assert (>= n 0))
(assert (not (>= n 0))

• Goal: translate a Lean local
context, and goal into SMT2
query.
• Recognize fragment and

translate to low-order logic
(LOL).
• Logic supports some higher

order features, is successively
lowered to FOL, finally SMT2.

mutual inductive type, term
with type : Type
| bool : type
| int : type
| var : string → type
| fn : list type → type → type
| refinement : type → (string → term) → type
with term : Type
| apply : string → list term → term
| true : term
| false : term
| var : string → term
| equals : term → term → term
| …
| forallq : string → type → term → term

meta structure context :=
(type_decl : rb_map string type)
(decls : rb_map string decl)
(assertions : list term)

meta def reflect_prop_formula' : expr → smt2_m lol.term
| `(¬ %%P) := lol.term.not <$> (reflect_prop_formula' P)
| `(%%P = %%Q) := lol.term.equals <$>
 (reflect_prop_formula' P) <*>
 (reflect_prop_formula' Q)
| `(%%P ∧ %%Q) := lol.term.and <$>
 (reflect_prop_formula' P) <*>
 (reflect_prop_formula' Q)
| `(%%P ∨ %%Q) := lol.term.or <$>
 (reflect_prop_formula' P) <*>
 (reflect_prop_formula' Q)
| `(%%P < %%Q) := reflect_ordering lol.term.lt P Q
| …
| `(true) := return $ lol.term.true
| `(false) := return $ lol.term.false
| e := …

Coinductive predicates

• Developed by Johannes Hölzl (approx. 800 lines of code)

• Uses impredicativity of Prop

• No kernel extension is needed

simple expression language

nano crush

simple expression language

Development support

• Profiler

• Based on sampling

• Useful for finding performance bottleneck in tactics

• Debugger based on VM monitor

• User can write VM monitors in Lean

• CLI debugger is implemented in Lean

• IDE support is on the TODO list

vm monitor

Conclusion

• Users can create their on automation, extend and customize Lean

• Domain specific automation

• Internal data structures and procedures are exposed to users (e.g.,
congruence closure)

• White-box automation

• We are going to expose more

• Structured trace messages

• More powerful parser and pretty printing extensions

• Code generator extensions

• …

