Counting Immutable Beans

Reference Counting Optimized for Purely Functional Programming

Sebastian Ullrich - KIT - Germany
Leonardo de Moura - MSR - USA

AT ‘Research

Karlsruhe Institute of Technology

—
V

THEOREM PROVER

e Pure functional language; Strict; Dependent types
e Meta programming: extend Lean using Lean

e Applications:

JrFA
 Formal Abstracts Project - Tom Hales STRACTS
e Perfectoid Spaces Project Lean perfectoid spaces

Kevin Buzzard, Johan Commelin, and Patrick Massot

* Education (CMU, Imperial College, ...)
e Lean Forward - Jasmin Blanchette Zm Torward

e Protocol Verification (Galois)

* SQL query equivalence (UW)

* IMO Grand Challenge (MSR) c\/\D
e AlivelnLean (MSR)

e 6 papers at ITP 2019

_\v/ \ an extensible compiler

Programming language

Lean3 users write metaprograms/tactics in Lean
Examples: ring solver, conductive predicates, superposition prover,
transfer tactic, ...

We are implementing Lean4 in Lean itself.
All subsystems can be extended: parser, elaborator, compiler, ...

New compiler is already outperforming Haskell and OCaml.

Proofs for performance and profit.
A better value proposition: use proofs for obtaining more efficient code.

The return of reference counting

 Most compilers for functional languages (OCaml, GHGC, ...) use tracing GC
e RC is simple to implement.
e Easy to support multi-threading programs.

e Destructive updates when reference count = 1.
* |t is a known optimization for big objects (e.g., arrays).
Array.set : Array a -> Index -> a -> Array a
* We demonstrate it is also relevant for small objects.

* In languages like Coq and Lean, we do not have cycles.

e Easy to interface with C, C++ and Rust.

Resurrection hypothesis

Many objects die just before the creation of an
object of the same kind.

Examples:

e Listmap:Lista->(a->b)->Listb

* Compiler applies transformations to expressions.
* Proof assistant rewrites/simplifies formulas.

e Updates to functional data structures such as red black trees.

* List zipper goForward ([], bs) = ([], bs)
goForward (x : xs, bs) = (xs, x : bs)

Contributions

Approach for reusing memory: small and big values.
Big values are often nested into small ones.

Inference procedure for borrowed references (a la Swift)

Simple and efficient scheme for performing atomic RC
updates in multi-threaded programs.

Implementation and experimental evaluation.

https://github.com/leanprover/lean4

Reference counts

Each heap-allocated object has a reference count.

We can view the counter as a collection of tokens.
The Iinc instruction creates a new token.
The dec instruction consumes a token.

When a function takes an argument as an owned reference,
it must consume one of its tokens.

A function may consume an owned reference by using dec,
passing it to another function, or storing it in a newly
allocated value.

Owned references: examples

id x=ret x
mkPairOf x = inc x; let p = Pair x x; ret p

fstxy=dec y;ret x

Borrowed references

 If Xs IS an owned reference

isNil xs = case xs of
(Nil — dec xs; ret true)
(Cons — dec xs; ret false)

 |If xs Is a borrowed reference

isNil xs = case xs of (Nil — ret true) (Cons — ret false)

Owned vs Borrowed

e Transformers and constructors own references.
* |nspectors and visitors borrow references.

* Remark: it is not safe to destructively update borrowed
references even when RC = 1

Reusing small objects

map f [| =[]
map f (x : xs) = (f x) : (map f xs)

; First attempt

map f xs = case xs of
(ret xs)
(let x=proj; xs;inc x; let s=projs xs; inc s;
let y=fx;let ys=map fs;
let r = (reuse xs in ctor; y ys); ret r)

Reusing small objects

map f xs = case xs of
(ret xs)
(let x=proj; xs;inc x; let s=projs xs; inc s;
let y=fx;let ys=map fs;
let r = (reuse xs in ctor; y ys); ret r)

f— trim

xs —| 1 —— 1 1 ...

1 |“hello” 1 |“ world”

Reusing small objects

map f xs = case xs of
(ret xs)

(Let x =proj; xs;inc x; let s=projs xs; inc s;
let y=fx;let ys=map fs;
let r = (reuse xs in ctory y ys); ret r)

f— trim

xs —| 1 —— 2 —1— ...

X —| 2 |“hello” 1 |*“ world”

Reusing small objects

map f xs = case xs of

(ret xs)

(let x=proj; xs;inc x; let s=projs xs; inc s;
let y=fx;|let ys=map fs;
let r = (reuse xs in ctor; y ys); ret r)

f— trim

xs —| 1 —— 2 o e S

\4 \4

X — 1 |“hello” 1 |“world”

Yy —| 1 | “hell0”

Reusing small objects

map f xs = case xs of

(ret xs)

(let x=proj; xs;inc x; let s=projs xs; inc s;
let ys=map fs;
let r = (reuse xs in ctor; y ys); ret r)

let y=fx;

f— trim

xs —| 1

\4

X —| 1

“hello”

“ world”

“hello”

“world”

Reusing small objects

map f xs = case xs of

(ret xs)

(let x=proj; xs;inc x; let s=projs xs; inc s;
let y=fx;let ys=map fs;
let r = (reuse xs in ctor; y ys); ret r)

f— trim

A

"'~ l

xs —| 1 —_— | 1 —— ...
v v

Yy —1 1 | “hello” 1 [“world”

BAD. We only reused the one memory cell. We can do better!

Reusing small objects

map f [| =[]
map f (x : xs) = (f x) : (map f xs)

; Second attempt

map f xs = case xs of
(ret xs)
(let x=proj; xs;inc x; let s=projs xs; inc s;

let w=[reset xs;
let y=fx;let ys=map fs;
let r = (reuse win ctors y ys); ret r)

Reusing small objects

map f xs = case xs of
(ret xs)
(let x=proj; xs;inc x; let s=projs xs; inc s;
let w=reset xs;
let y=fx;let ys=map fs;
let r = (reuse win ctory y ys); ret r)

f— trim

xs —| 1 —— 1 e e

1 |“hello” 1 |“ world”

Reusing small objects

map f xs = case xs of
(ret xs)
(Let x=proj; xs;inc x; let s=projs xs; inc s;
let w=reset xs;
let y=fx;let ys=map fs;
let r = (reuse win ctory y ys); ret r)

f— trim

xs —| 1 —— 2 —1— ...

X —| 2 |“hello” 1 |*“ world”

Reusing small objects

map f xs = case xs of
(ret xs)
(let x=proj; xs;inc x; let s=projs xs; inc s;

let w=reset xs;
let y=fx;let ys=map fs;
let r = (reuse win ctory y ys); ret r)

f— trim

%)

xs —| 1 1 —1— ...

X — 1 |“hello” 1 |“world”

Reusing small objects

map f xs = case xs of
(ret xs)
(let x=proj; xs;inc x; let s=projs xs; inc s;
let w=reset xs;
let y=fx;let ys=mapfs;
let r = (reuse win ctory y ys); ret r)

f— trim

%)

xs —| 1 1 |
W

\ 4
X — 1 | “hello” 1 |“world”

Reusing small objects

map f xs = case xs of
(ret xs)
(let x=proj; xs;inc x; let s=projs xs; inc s;
let w=reset xs;
let y=fx;|let ys=map fs;
let r = (reuse win ctory y ys); ret r)

f— trim
A

\/

xs —| 1 —+—
W

\ 4
X — 1 | “hello” 1 [“world”

Reusing small objects

map f xs = case xs of
(ret xs)
(let x=proj; xs;inc x; let s=projs xs; inc s;
let w=reset xs;
let y=fx;let ys=map fs;
let|r = (reuse win ctory y ys); ret r)

f— trim

A
r I/
xs — 1 —1— 1 o —
7%

v v
X —| 1 “hello” 1 |“world”
y—""

The whole list was destructively updated!

The compiler

Lean => Lambda Pure w, X, Y,z € Var
¢ € Const

. : ec€ Expr =«=cy|papcy|xy]|ctor;y]|proj;x
Insert reset/reuse instructions P 2 ylxyletor:y o
F € FnBody :=retx |letx =e; F | casexof F
f € Fn t=Ay. F

Infer borrowed annotations 5 € Program = Const — Fn

Insert inc/dec instructions

Additional optimizations

Inserting reset/reuse

For each (case x of F1 ... Fy), for each branch Fj, if Fi is of form
(P; S; let y := ctori zs; K) where
1. #zs I1s equal to the number of fields of x at branch Fi
2. x Is dead at (S5; let y := ctor; zs; K)
then replace with
P; let w :=reset x; §; let y := reuse w in ctor; zs; K

swap xs = case xs of

(ret xs)
swap [] =[] (let t; = proj, xs; case t; of
swap [x] = [x] » (ret xs)
swap (x:y:zs) = y:x:2s (let hy = proji xs;

let hy = proji t1; let ty = projo ti;
let ry = ctory hy tp; 1et ry = ctory hy ry; ret r))

Inserting reset/reuse

For each (case x of F1 ... Fy), for each branch Fj, if Fi is of form
(P; S; let y := ctori zs; K) where

1. #zs I1s equal to the number of fields of x at branch Fi

2. x Is dead at (S5; let y := ctor; zs; K)

then replace with
P; let w :=reset x; §; let y := reuse w in ctor; zs; K

swap xs = case xs of swap xs = case xs of
(ret xs) (ret xs)
(let t; = projy xs; case t; of (let t; = proj2 xs; case t; of

(ret xs)

(let h; = proji xs; let wy = reset xs;
let hy = proji t1; let to = projs t1;
let wy = reset t;; let r; = reuse wy inctors hy 5 ;
let r, = reuse wy in ctory hy ri;ret r))

(ret xs)
(let hy = proji xs;

let hy = proji t1; let ty = projs t1;

let r; = ctory hy ty; let ry = ctory hy r1; ret ry))

Inferring borrowed annotations

Heuristic based on the fact that when we mark a parameter
as borrowed
 We reduce the number of RC operations needed, but we

prevent reset/reuse and primitive operations from reusing
memory cells.

* We also want to preserve tail calls.

e QOur approach: collect variables that must be owned.
e x or one of its projections is used in a reset.
e x Is passed to a function that takes an owned reference.
By marking x as borrowed we destroy a tail call.

Talil call preservation

fx=case xof
(let r=proj; x; retr)

(let y; = ctory; let y, = ctory y;;|letr=fys;retr

If we mark x as borrowed, we do not preserve tail calls

fx=case xof
(let r=proji x; inc r; ret r)
(let y; = ctory; let y» ctory yq;
letr=fy,;dec y;retr)

Multi-threading support

Task.mk : (Unit — a) — Task «

Task.bind : Task o — (ax — Task p) — Task f
Task.get : Task ¢ — «

We store in the object header whether an object is multi-thread or
not.

New objects are not multi-threaded.

We don’t need memory fences for updating RC if an object is not
multi-thread.

The runtime has a markMT(o) primitive.
(1ask.mk f) => markMT(f)

(Task.bind x f) => markMT(x) and markMT(f)

Simple Optimizations

Our compiler expands reset and reuse using lower level
instructions: isShared x, set x[i] v, ...

The lower level instructions generate new optimization
opportunities for many common IR sequences. Example:
reset immediately followed by reuse.

Minimizes the amount of copying and RC operations.

Comparison with
Linear/Uniqueness Types

Values of types marked as linear/unique can be destructively
updated.

Compiler statically checks whether values are being used
linearly or not.

Pros: no runtime checks; compatible with tracing GCs.

Cons: awkward to use; complicates a dependent type
system even more.

Big cons: all or nothing. A function f that takes non-shared
values most of the time cannot perform destructive updates.

al0] | a

Persistent Arrays

root, tail, s (aka offset)

a[s]

a[s+1]

a[s+2]

a[33]l ...

a[63]

Reusing big and small objects.
Persistent arrays will often be shared.

What about cycles?

Inductive datatypes in Lean are acyclic.

We can implement co-inductive datatypes without creating
cycles.

Only unsafe code in Lean can create cycles.

Cycles are overrated.

What about graphs? How do you represent them in Lean?
e Use arrays like in Rust.

 We have destructive updates in Lean.

* Persistent arrays are also quite fast.

Experimental evaluation

Cache
Misses [1M/s]

Benchmark Lean del[%]

GHC GC CM OCami GC

binarytrees
deriv
const fold

gsort
rbmap

rbmap_10

rbmap_1

Conclusion

It is feasible to implement functional languages using RC.
We barely scratched the surface of the design space.

We are implementing Lean4 in Lean.

Compiler generates C code.

Compiler source code and all experiments are available
online. http://github.com/leanprover/lean4

We are working on new optimizations.

http://github.com/leanprover/lean4

