
Counting Immutable Beans

Sebastian Ullrich - KIT - Germany

Leonardo de Moura - MSR - USA

Reference Counting Optimized for Purely Functional Programming

• Pure functional language; Strict; Dependent types

• Meta programming: extend Lean using Lean

• Applications:

• Formal Abstracts Project - Tom Hales

• Perfectoid Spaces Project

Kevin Buzzard, Johan Commelin, and Patrick Massot

• Education (CMU, Imperial College, …)

• Lean Forward - Jasmin Blanchette

• Protocol Verification (Galois)

• SQL query equivalence (UW)

• IMO Grand Challenge (MSR)

• AliveInLean (MSR)

• 6 papers at ITP 2019

an extensible compiler

Lean3 users write metaprograms/tactics in Lean

Examples: ring solver, conductive predicates, superposition prover,
transfer tactic, …

We are implementing Lean4 in Lean itself.

All subsystems can be extended: parser, elaborator, compiler, …

New compiler is already outperforming Haskell and OCaml.

Proofs for performance and profit.

A better value proposition: use proofs for obtaining more efficient code.

Programming language

The return of reference counting
• Most compilers for functional languages (OCaml, GHC, …) use tracing GC

• RC is simple to implement.

• Easy to support multi-threading programs.

• Destructive updates when reference count = 1.

• It is a known optimization for big objects (e.g., arrays).

Array.set : Array a -> Index -> a -> Array a

• We demonstrate it is also relevant for small objects.

• In languages like Coq and Lean, we do not have cycles.

• Easy to interface with C, C++ and Rust.

Resurrection hypothesis

Many objects die just before the creation of an
object of the same kind.

Examples:

• List.map : List a -> (a -> b) -> List b

• Compiler applies transformations to expressions.

• Proof assistant rewrites/simplifies formulas.

• Updates to functional data structures such as red black trees.

• List zipper

Contributions

• Approach for reusing memory: small and big values.

 Big values are often nested into small ones.

• Inference procedure for borrowed references (à la Swift)

• Simple and efficient scheme for performing atomic RC
updates in multi-threaded programs.

• Implementation and experimental evaluation.

• https://github.com/leanprover/lean4

Reference counts

• Each heap-allocated object has a reference count.

• We can view the counter as a collection of tokens.

• The inc instruction creates a new token.

• The dec instruction consumes a token.

• When a function takes an argument as an owned reference,
it must consume one of its tokens.

• A function may consume an owned reference by using dec,
passing it to another function, or storing it in a newly
allocated value.

Owned references: examples

Borrowed references
• If xs is an owned reference

• If xs is a borrowed reference

Owned vs Borrowed
• Transformers and constructors own references.

• Inspectors and visitors borrow references.

• Remark: it is not safe to destructively update borrowed
references even when RC = 1

Reusing small objects

First attempt

Reusing small objects

1 1xs …

f trim

1 “ hello ” 1 “ world”

Reusing small objects

1 2xs …

f trim

2 “ hello ” 1 “ world”

s

x

Reusing small objects

1 2xs …

f trim

1 “ hello ” 1 “ world”

s

x

y 1 “hello”

Reusing small objects

1 1xs …

f trim

1 “ hello ” 1 “ world”

s

x

y 1 “hello”

1 …

1 “world”

ys

Reusing small objects

1xs

f trim

y 1 “hello”

1 …

1 “world”

ys
r

BAD. We only reused the one memory cell. We can do better!

Reusing small objects

Second attempt

Reusing small objects

1 1xs …

f trim

1 “ hello ” 1 “ world”

Reusing small objects

1 2xs …

f trim

2 “ hello ” 1 “ world”

s

x

Reusing small objects

1 1
w

…

f trim

1 “ hello ” 1 “ world”

s

x

xs

Reusing small objects

1 1
w

…

f trim

1 “hello” 1 “ world”

s

x

xs

y

Reusing small objects

1 1
w

…

f trim

1 “hello” 1 “world”

s

x

xs

y

ys

Reusing small objects

1 1
w

…

f trim

1 “hello” 1 “world”

s

x

xs

y

ys

r

The whole list was destructively updated!

The compiler

• Lean => Lambda Pure

• Insert reset/reuse instructions

• Infer borrowed annotations

• Insert inc/dec instructions

• Additional optimizations

Inserting reset/reuse
For each (case x of F1 … Fn), for each branch Fi, if Fi is of form

(P; S; let y := ctori zs; K) where

1. #zs is equal to the number of fields of x at branch Fi

2. x is dead at (S; let y := ctori zs; K)

then replace with

P; let w := reset x; S; let y := reuse w in ctori zs; K

Inserting reset/reuse
For each (case x of F1 … Fn), for each branch Fi, if Fi is of form

(P; S; let y := ctori zs; K) where

1. #zs is equal to the number of fields of x at branch Fi

2. x is dead at (S; let y := ctori zs; K)

then replace with

P; let w := reset x; S; let y := reuse w in ctori zs; K

Inferring borrowed annotations

• Heuristic based on the fact that when we mark a parameter
as borrowed

• We reduce the number of RC operations needed, but we

prevent reset/reuse and primitive operations from reusing
memory cells.

• We also want to preserve tail calls.

• Our approach: collect variables that must be owned.

• x or one of its projections is used in a reset.

• x is passed to a function that takes an owned reference.

• By marking x as borrowed we destroy a tail call.

Tail call preservation

If we mark x as borrowed, we do not preserve tail calls

Multi-threading support

• We store in the object header whether an object is multi-thread or
not.

• New objects are not multi-threaded.

• We don’t need memory fences for updating RC if an object is not
multi-thread.

• The runtime has a markMT(o) primitive.

(Task.mk f) => markMT(f)

(Task.bind x f) => markMT(x) and markMT(f)

Simple Optimizations

• Our compiler expands reset and reuse using lower level
instructions: isShared x, set x[i] v, …

• The lower level instructions generate new optimization
opportunities for many common IR sequences. Example:
reset immediately followed by reuse.

• Minimizes the amount of copying and RC operations.

Comparison with
Linear/Uniqueness Types

• Values of types marked as linear/unique can be destructively
updated.

• Compiler statically checks whether values are being used
linearly or not.

• Pros: no runtime checks; compatible with tracing GCs.

• Cons: awkward to use; complicates a dependent type
system even more.

• Big cons: all or nothing. A function f that takes non-shared
values most of the time cannot perform destructive updates.

Persistent Arrays

…

… … ……

…a[0] a[1] a[31] … …

… … … … … … … … …

a[32] a[33] a[63]

…a[s] a[s+1] a[s+2]

root, tail, s (aka offset)

Reusing big and small objects.
Persistent arrays will often be shared.

What about cycles?

• Inductive datatypes in Lean are acyclic.

• We can implement co-inductive datatypes without creating
cycles.

• Only unsafe code in Lean can create cycles.

• Cycles are overrated.

• What about graphs? How do you represent them in Lean?

• Use arrays like in Rust.

• We have destructive updates in Lean.

• Persistent arrays are also quite fast.

Experimental evaluation

Benchmark Lean del[%] Cache
Misses [1M/s]

(CM)

GHC GC CM OCaml GC CM

binarytrees 1.0 40 37 3.09 72 120 1.20 N/A 186
deriv 1.0 24 32 1.89 51 31 1.42 76 59

const_fold 1.0 11 83 2.23 64 51 4.66 91 107

qsort 1.0 9 0 1.63 1 0 1.37 13 1
rbmap 1.0 2 6 2.41 39 23 1.00 31 27

rbmap_10 1.48 15 34 16.37 88 47 1.93 60 59
rbmap_1 5.1 27 55 16.41 88 48 9.83 88 89

Conclusion

• It is feasible to implement functional languages using RC.

• We barely scratched the surface of the design space.

• We are implementing Lean4 in Lean.

• Compiler generates C code.

• Compiler source code and all experiments are available
online. http://github.com/leanprover/lean4

• We are working on new optimizations.

http://github.com/leanprover/lean4

