
Leo de Moura - Microsoft Research

Lean for the Curious Mathematician - ICERM - July 15, 2022

Lean 4
Theorem Prover and Programming Language

How did we get here?
Previous project: Z3 SMT solver

The Lean project started in 2013 with very different goals

A library for automating proofs in Dafny, F*, Coq, Isabelle, …

Bridge the gap between interactive and automated theorem proving

Improve the “lost-in-translation” and proof stability issues

Lean 1.0 - learning DTT

Lean 2.0 (2015) - first official release

Lean 3.0 (2017) - users can write tactics in Lean itself

Extensibility
Lean 3 users extend Lean using Lean

Approximately 5% of Mathlib is Lean extensions

Examples:
Ring Solver, Coinductive predicates, Transfer tactic,
Superposition prover, Linters,
Fourier-Motzkin & Omega, Polyrith, …

Access Lean internals using Lean
Type inference, Unifier, Simplifier, Decision procedures,
Type class resolution, …

Lean 3.x limitations
Lean programs are compiled into byte code and then interpreted (slow).

Lean expressions are foreign objects reflected in Lean.

Very limited ways to extend the parser.

Users cannot implement their own elaboration strategies.

Scalability issues, design limitations, missing features, bugs, etc.

It’s been a long time coming …

“We should really refactor the elaborator as well”

“If we rewrite the frontend, we should do it in Lean”

“We first need a capable Lean compiler for that …”

Sebastian Ullrich and I started Lean 4 in 2018

Lean in Lean

Extensible programming language and theorem prover

A platform for

Software verification

Formalized mathematics

Developing custom automation and domain-specific languages (DSL)

begins

Lean 4 is being implemented in Lean

At the end of 2020 Lean 4 compiles itself

Lean 4 first milestone release: Jan 2021
We are using milestone releases for getting feedback from the community.

We are at milestone 4.

We are planning to make the official release at the end of the summer.

We have monthly update meetings online open to the whole community.

Additional details on Zulip and Twitter (leanprover).

Many thanks to the Mathlib community
Mathlib success was instrumental for getting additional funding for the project

2021 was a great year for the Lean project. We now have

- A full-time program manager (Sarah Smith)

- New developer starting soon (pending visa), trying to hire another one next year

- Engineers helping with the VS Code Lean extension and infrastructure

- Contractor for writing an introductory book for Lean

- (Trying to) hire 4 Mathlib maintainers to help with the port

- Academic gifts

Augmented Mathematical Intelligence (AMI) at Microsoft

Mission
Empower mathematicians working on cutting-edge mathematics
Democratize math education
Platform for Math-AI research

Lean 4 quick start

You can use Lean 3 and Lean 4 simultaneously
Thanks to elan (by Sebastian Ullrich)

If you use Lean 3 you are probably already using elan

elan is the Lean version manager

Theorem Proving in Lean 4
https://leanprover.github.io/theorem_proving_in_lean4/

Functional Programming in Lean
By David Christiansen

https://leanprover.github.io/functional_programming_in_lean/introduction.html

It is be updated monthly

https://leanprover.github.io/functional_programming_in_lean/introduction.html

Many tutorial like examples
Powered by LeanInk

https://leanprover.github.io/lean4/doc/examples

https://leanprover.github.io/lean4/doc/examples

KIT lecture notes
Sebastian Ullrich’s lecture notes for the following course based on Lean 4.

Theorem prover lab: applications in programming languages

https://github.com/IPDSnelting/tba-2022

https://github.com/IPDSnelting/tba-2021

Slides, exercises, and a lot of useful information about Lean 4.

The 2022 version uses the new Aesop tactic.

https://pp.ipd.kit.edu/lehre/SS2022/tba/
https://github.com/IPDSnelting/tba-2022
https://github.com/IPDSnelting/tba-2021

Metaprogramming in Lean
Manual being developed by the community.

Many thanks to Arthur Paulino for spearheading this effort.

https://github.com/arthurpaulino/lean4-metaprogramming-book

https://github.com/arthurpaulino/lean4-metaprogramming-book

Porting Mathlib
Mathlib is massive, almost 1 million lines of code.

Lean 4 is not backward compatible with Lean 3.

Mathlib was much smaller when we started Lean 4 (approx. 45 thousand lines).

Mathport tool (by Mario Carneiro and Daniel Selsam).

Ports Lean 3 files to Lean 4. We also have support for porting Lean 3 object files.

It can’t port user-extensions (Mathlib tactic folder).

Mathlib has more 40 thousand lines of user-extensions.

It will be ported manually this summer.

Four Mathlib maintainers will be working as contractors. One of them will be full-time.

Hackton style events.

Porting Mathlib
Rest of the talk: motivations for doing it.

Code specialization, simplification, and many other optimizations (beginning of 2019)

Generates C code

Safe destructive updates in pure code - FBIP idiom

“Counting Immutable Beans: Reference Counting Optimized for Purely Functional
Programming”, Ullrich, Sebastian; de Moura, Leonardo

Compiler

It changes how you write pure functional programs

Hash tables and arrays are back

It is way easier to use than linear type systems. It is not all-or-nothing

Lean 4 persistent arrays are fast

“Counting immutable beans” in the Koka programming language

“Perceus: Garbage Free Reference Counting with Reuse” (2020)

 Reinking, Alex; Xie, Ningning; de Moura, Leonardo; Leijen, Daan

Lean 4 red-black trees outperform non-persistent version at C++ stdlib

Result has been reproduced in Koka

FBIP

Type classes provide an elegant and effective way of managing ad-hoc polymorphism

Lean 3 TC limitations: diamonds, cycles, naive indexing

There is no ban on diamonds in Lean 3 or Lean 4

New algorithm based on tabled resolution

“Tabled Type class Resolution”

Selsam, Daniel; Ullrich, Sebastian; de Moura, Leonardo

Addresses the first two issues

More efficient indexing based on (DTT-friendly) “discrimination trees”

Discrimination trees are also used to index: unification hints, and simp lemmas

Type class resolution

Semigroup

Monoid CommSemigroup

CommMonoid

Multiple inheritance and scalability
Lean 3 “old_structure_cmd” generates flat structures that do not scale well

Semigroup

Monoid CommSemigroup

CommMonoid

Mul

“Beyond Notations: Hygienic Macro Expansion for Theorem Proving Languages”

Ullrich, Sebastian; de Moura, Leonardo

Hygienic macro system

Hygiene = no accidental name capture.

Hygienic macro system

We have many different syntax categories.

Hygienic macro system

Big operator notation: an example

Big operator notation: an example

Big operator notation: an example

Big operator notation: an example

Big operator notation: an example

Many Lean 3 tactics are just macros, and they can be recursive.

Hygienic macro system

Hygienic and typed macro system

Structured (and hygienic) tactic language

Structured (and hygienic) tactic language

match … with works in tactic mode, and it is just a macro

Structured (and hygienic) tactic language

Multi-target induction

Structured (and hygienic) tactic language

Default elimination principle.

Structured (and hygienic) tactic language
By default tactic generated names are “inaccessible”

You can disable this behavior using the following command

simp
Lean 3 simp is a major bottleneck

Two sources of inefficiency: simp set is reconstructed all the time, poor indexing

Indexing in DTT is complicated because of definitional equality

Lean 3 simp uses keyed matching (Georges Gonthier)

Keyed matching works well for the rewrite tactic because there are few failures

simp
Lean 4 uses discrimination trees to index simp sets

It is the same data structure used to index type class instances

Here is a synthetic benchmark

…

num. lemmas + 1 Lean 3 Lean4
500 0.89s 0.18s
1000 2.97s 0.39s
1500 6.67s 0.61s
2000 11.86s 0.71s
2500 18.25s 0.93s
3000 26.90s 1.15s

match … with
There is no equation compiler

Pattern matching, and termination checking are completely decoupled

Example:

expands into

match … with

We generate an auxiliary “matcher” function for each match … with
The matcher doesn’t depend on the right-hand side of each alternative

match … with

The new representation has many advantages

We can “change” the motive when proving termination

We “hides” all nasty details of dependent pattern matching

pp of the kernel term

match … with
Equality proofs (similar to if-then-else)

split tactic
Useful for reasoning about match-with containing overlapping patterns

Recursion

Termination checking is independent of pattern matching

mutual and let rec keywords

We compute blocks of strongly connected components (SCCs)

Each SCC is processed using one of the following strategies

non rec, structural, unsafe, partial, well-founded.

Avoiding auxiliary declarations with let rec

Haskell-like “where” clause
Expands into let rec

Termination Checker

Termination Checker - Mutual Recursion

Elaborator: postpone and resume

Lean 3 has very limited support for postponing the elaboration of terms

Elaborator: postpone and resume

Same example using named arguments

Same example using anonymous function syntax sugar, and F# style $

Heterogeneous operators
In Lean3, +, *, -, / are all homogeneous polymorphic operators

What about matrix multiplication?

Nasty interactions with coercions.

Rust supports heterogenous operators

Heterogeneous operators in action

Scoped attributes
Lean 4 supports scoped instances, notation, unification hints, simp lemmas, …

Implicit lambdas

The Lean 3 curse of @s and _s

New feature: implicit lambdas

Implicit lambdas
The Lean 3 double curly braces workaround

Implicit lambdas
The Lean 4 way: no @s, _s, {{}}s

Implicit lambdas
We can make it nicer:

It is equivalent to

Fine-grain checkpoints

…

…

Unification hints & bundled structures

Unification hints & bundled structures

Unification hints & type classes: bridge

Definitional Eta for Structures

…

Definitional Eta for Structures

Fails in Lean 3

Computed Fields
Many thanks to Gabriel Ebner

Vector/Array notation

Delaborator: kernel terms back to syntax

The Lean 4 LSP Server is feature complete
Big team effort: Marc Huisinga, Wojciech Nawrocki, Ed Ayers, Sebastian Ullrich,

Gabriel Ebner, Lars König , Leo de Moura

The Lean 4 LSP Server is feature complete

The Lean 4 LSP Server is feature complete

New feature: unused variable linter

Many thanks to Lars König

New LSP features coming soon …

New LSP features coming soon …

Lake = Lean + Make
Lake is the new Lean build system - https://github.com/leanprover/lake

By Lewis “Mac” Malone

Lake is extensible and implemented in Lean 4

https://github.com/leanprover/lake

Lake - precompiled extensions
Your Lean extensions are compiled to native machine code.

You can use “extern C” functions in your extensions.

doc-gen4: Documentation Generator for Lean 4
By Henrik Böving https://github.com/leanprover/doc-gen4

https://github.com/leanprover/doc-gen4

doc-gen4: Documentation Generator for Lean 4

By Niklas Bülow

Literate programming for Lean 4.

Relies on the same infrastructure we use for the IDEs.

Future: Doc-gen4 + LeanInk integration

Cool projects using Lean 4
SciLean - Tomas Skrivan

Formalization: Gardam’s disproof of the Kaplansky Unit Conjecture - 	 Siddhartha Gadgil

Aesop - White Box Automation for Lean 4 - Jannis Limperg

•

Computational Law - Chris Bailey

Zero Knowledge Type Certificates - Yatima Inc.

CVC 5 / Lean 4 integration - Abdal Mohamed, Tomaz Mascarenhas, Haniel Barbosa,
Cesare Tinelli

Papyrus - Lewis “Mac” Malone

SciLean
A framework for scientific computing based on Lean 4

https://github.com/lecopivo/SciLean

https://github.com/lecopivo/SciLean
https://www.youtube.com/watch?v=qcE9hFPgYkg

SciLean - Houdini

https://github.com/lecopivo/SciLean

Aesop
White box automation for Lean 4 - by Jannis Limperg

https://github.com/JLimperg/aesop

https://github.com/JLimperg/aesop

Computational Law in Lean 4
Chris Bailey - Law Student - UIUC

Intern this summer at Microsoft Research

Mentors: Jonathan Protzenko and Leo de Moura

Conclusion
We implemented Lean 4 in Lean

Very extensible system: syntax, elaborators, delaborators, tactics, …

Compiler generates efficient code

User-extensions can be pre-compiled

We barely scratched the surface of the design space

The feedback on the milestone releases has been amazing, many new exciting applications.

Mathlib port is the next challenge

