Lean 4
Theorem Prover and Programming Language

Leo de Moura - Microsoft Research
Lean for the Curious Mathematician - ICERM - July 15, 2022
How did we get here?

Previous project: Z3 SMT solver

The Lean project started in 2013 with very different goals

- A library for automating proofs in Dafny, F*, Coq, Isabelle, …
- Bridge the gap between interactive and automated theorem proving
- Improve the “lost-in-translation” and proof stability issues

Lean 1.0 - learning DTT

Lean 2.0 (2015) - first official release

Lean 3.0 (2017) - users can write tactics in Lean itself
Extensibility

Lean 3 users extend Lean using Lean

Approximately 5% of Mathlib is Lean extensions

Examples:
 - Ring Solver, Coinductive predicates, Transfer tactic,
 - Superposition prover, Linters,
 - Fourier-Motzkin & Omega, Polyrith, …

Access Lean internals using Lean
 - Type inference, Unifier, Simplifier, Decision procedures,
 - Type class resolution, …
Lean 3.x limitations

Lean programs are compiled into byte code and then interpreted (slow).

Lean expressions are foreign objects reflected in Lean.

Very limited ways to extend the parser.

Users cannot implement their own elaboration strategies.

Scalability issues, design limitations, missing features, bugs, etc.
It’s been a long time coming …

“Parser refactoring + Hygienic macro system #1674
Open
leodemoura opened this issue on Jun 16, 2017 · 32 comments

“We should really refactor the elaborator as well”

“If we rewrite the frontend, we should do it in Lean”

“We first need a capable Lean compiler for that …”
Sebastian Ullrich and I started Lean 4 in 2018

Lean in Lean

Extensible programming language and theorem prover

A platform for

- Software verification
- Formalized mathematics
- Developing custom automation and domain-specific languages (DSL)
Lean 4 is being implemented in Lean

```lean
inductive Expr where
| bvar   : Nat → Expr          -- bound variables
| fvar   : FVarId → Expr       -- free variables
| mvar   : MVarId → Expr       -- meta variables
| sort   : Level → Expr        -- Sort
| const  : Name → List Level → Expr -- constants
| app    : Expr → Expr → Expr  -- application
| lam    : Name → Expr → Expr → BinderInfo → Expr -- lambda abstraction
| forallE : Name → Expr → Expr → BinderInfo → Expr -- (dependent) arrow
| letE   : Name → Expr → Expr → Expr → Bool → Expr -- let expressions
| lit    : Literal → Expr      -- literals
| mdata  : MData → Expr → Expr -- metadata
| proj   : Name → Nat → Expr → Expr -- projection

/- Infer type of lambda and let expressions -/
private def inferLambdaType (e : Expr) : MetaM Expr :=
lambdaLetTelescope e fun xs e => do
  let type ← inferType e
  mkForallFVars xs type
```
At the end of 2020 Lean 4 compiles itself
Lean 4 first milestone release: Jan 2021

We are using milestone releases for getting feedback from the community.

We are at milestone 4.

We are planning to make the official release at the end of the summer.

We have monthly update meetings online open to the whole community.

 Additional details on Zulip and Twitter (leanprover).
Many thanks to the Mathlib community

Mathlib success was instrumental for getting additional funding for the project

2021 was a great year for the Lean project. We now have

- A full-time program manager (Sarah Smith)
- New developer starting soon (pending visa), trying to hire another one next year
- Engineers helping with the VS Code Lean extension and infrastructure
- Contractor for writing an introductory book for Lean
- (Trying to) hire 4 Mathlib maintainers to help with the port
- Academic gifts
Augmented Mathematical Intelligence (AMI) at Microsoft

Mission

Empower mathematicians working on cutting-edge mathematics
Democratize math education
Platform for Math-AI research
Lean 4 quick start

These instructions will walk you through setting up Lean using the "basic" setup and VS Code as the editor. See Setup for other ways, supported platforms, and more details on setting up Lean.

See quick walkthrough demo video.

1. Install VS Code.

2. Launch VS Code and install the lean4 extension.

3. Create a new file using "File > New Text File" (Ctrl+N). Click the Select a language prompt, type in lean4, and hit ENTER. You should see the following popup:
You can use Lean 3 and Lean 4 simultaneously

Thanks to elan (by Sebastian Ullrich)

If you use Lean 3 you are probably already using elan

elan is the Lean version manager
Theorem Proving in Lean 4

by Jeremy Avigad, Leonardo de Moura, Soonho Kong and Sebastian Ullrich, with contributions from the Lean Community

This version of the text assumes you're using Lean 4. See the Setting Up Lean section of the Lean 4 Manual to install Lean. The first version of this book was written for Lean 2, and the Lean 3 version is available here.
Functional Programming in Lean

By David Christiansen

It is be updated monthly

Lean is an interactive theorem prover developed at Microsoft Research, based on dependent type theory. Dependent type theory unites the worlds of programs and proofs; thus, Lean is also a programming language. Lean takes its dual nature seriously, and it is designed to be suitable for use as a general-purpose programming language—Lean is even implemented in itself. This book is about writing programs in Lean.
Many tutorial like examples

Powered by LeanInk

https://leanprover.github.io/lean4/doc/examples

```lean
def Expr.typeCheck : Expr → { ty | HasType e ty } :=
match e with
| nat .. => .found .nat .nat
| bool .. => .found .bool .bool
| plus a b =>
  match a.typeCheck, b.typeCheck with
  | .found .nat h_1, .found .nat h_2 => .found .nat (.plus h_1 h_2)
  | _, _ => .unknown
| and a b =>
  match a.typeCheck, b.typeCheck with
  | .found .bool h_1, .found .bool h_2 => .found .bool (.and h_1 h_2)
  | _, _ => .unknown

theorem Expr.typeCheck_correct (h_3 : HasType e ty) (h_2 : e.typeCheck ≠ .unknown)
```
KIT lecture notes

Sebastian Ullrich’s lecture notes for the following course based on Lean 4.

Theorem prover lab: applications in programming languages

https://github.com/IPDSnelting/tba-2022
https://github.com/IPDSnelting/tba-2021

Slides, exercises, and a lot of useful information about Lean 4.
The 2022 version uses the new Aesop tactic.
Metaprogramming in Lean

Manual being developed by the community.

Many thanks to Arthur Paulino for spearheading this effort.

https://github.com/arthurpaulino/lean4-metaprogramming-book

- Main
 - i. Introduction
 - ii. Expressions
 - iii. MetaM
 - iv. Syntax
 - v. Macros
 - vi. Elaboration
 - vii. DSLs
 - viii. Tactics
 - ix. Cheat sheet
- Extra
 - i. Options
 - ii. Attributes
 - iii. Pretty Printing
Porting Mathlib

Mathlib is massive, almost 1 million lines of code.

Lean 4 is not backward compatible with Lean 3.

Mathlib was much smaller when we started Lean 4 (approx. 45 thousand lines).

Mathport tool (by Mario Carneiro and Daniel Selsam).

- Ports Lean 3 files to Lean 4. We also have support for porting Lean 3 object files.
- It can’t port user-extensions (Mathlib tactic folder).

Mathlib has more 40 thousand lines of user-extensions.

- It will be ported manually this summer.

Four Mathlib maintainers will be working as contractors. One of them will be full-time.

Hackton style events.
Porting Mathlib

Rest of the talk: motivations for doing it.
Code specialization, simplification, and many other optimizations (beginning of 2019)

Generates C code

Safe destructive updates in pure code - FBIP idiom

“Counting Immutable Beans: Reference Counting Optimized for Purely Functional Programming”, Ullrich, Sebastian; de Moura, Leonardo

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Lean</th>
<th>del</th>
<th>cm</th>
<th>GHC</th>
<th>gc</th>
<th>cm</th>
<th>OCaml</th>
<th>gc</th>
<th>cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>binarytrees</td>
<td>1.36s</td>
<td>40%</td>
<td>37 M/s</td>
<td>4.09</td>
<td>72</td>
<td>120</td>
<td>1.63</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>deriv</td>
<td>0.99</td>
<td>24</td>
<td>32</td>
<td>1.87</td>
<td>51</td>
<td>32</td>
<td>1.42</td>
<td>76</td>
<td>59</td>
</tr>
<tr>
<td>constfold</td>
<td>1.98</td>
<td>11</td>
<td>83</td>
<td>4.41</td>
<td>64</td>
<td>51</td>
<td>9.22</td>
<td>91</td>
<td>107</td>
</tr>
<tr>
<td>qsort</td>
<td>2.27</td>
<td>9</td>
<td>0</td>
<td>3.70</td>
<td>1</td>
<td>0</td>
<td>3.1</td>
<td>13</td>
<td>1</td>
</tr>
<tr>
<td>rbitmap</td>
<td>0.57</td>
<td>2</td>
<td>6</td>
<td>1.37</td>
<td>39</td>
<td>24</td>
<td>0.57</td>
<td>31</td>
<td>27</td>
</tr>
<tr>
<td>rbitmap_1</td>
<td>0.83</td>
<td>15</td>
<td>34</td>
<td>9.32</td>
<td>88</td>
<td>47</td>
<td>1.1</td>
<td>60</td>
<td>59</td>
</tr>
<tr>
<td>rbitmap_10</td>
<td>2.9</td>
<td>27</td>
<td>55</td>
<td>9.41</td>
<td>88</td>
<td>48</td>
<td>5.86</td>
<td>88</td>
<td>89</td>
</tr>
</tbody>
</table>
It changes how you write pure functional programs

Hash tables and arrays are back

It is way easier to use than linear type systems. It is not all-or-nothing

Lean 4 persistent arrays are fast

“Counting immutable beans” in the Koka programming language

“Perceus: Garbage Free Reference Counting with Reuse” (2020)
Reinking, Alex; Xie, Ningning; de Moura, Leonardo; Leijen, Daan

Lean 4 red-black trees outperform non-persistent version at C++ stdlib

Result has been reproduced in Koka
Type classes provide an elegant and effective way of managing ad-hoc polymorphism.

Lean 3 TC limitations: diamonds, cycles, naive indexing

There is no ban on diamonds in Lean 3 or Lean 4

New algorithm based on tabled resolution

“Tabled Type class Resolution”
Selsam, Daniel; Ullrich, Sebastian; de Moura, Leonardo

Addresses the first two issues

More efficient indexing based on (DTT-friendly) “discrimination trees”

Discrimination trees are also used to index: unification hints, and simp lemmas
Multiple inheritance and scalability

Lean 3 “old_structure_cmd” generates flat structures that do not scale well

class Semigroup (α : Type u) extends Mul α where
 mul_assoc (a b c : α) : a * b * c = a * (b * c)

class CommSemigroup (α : Type u) extends Semigroup α where
 mul_comm (a b : α) : a * b = b * a

class One (α : Type u) where
 one : α

instance [One α] : OfNat α (nat_lit 1) where
 ofNat := One.one

class Monoid (α : Type u) extends Semigroup α, One α where
 one_mul (a : α) : 1 * a = a
 mul_one (a : α) : a * 1 = a

class CommMonoid (α : Type u) extends Monoid α, CommSemigroup α

#check @CommMonoid.mk
-- @CommMonoid.mk : {α : Type u_1} → [toMonoid : Monoid α] → (∀ (a b : α), a * b = b * a) → CommMonoid α
Hygienic macro system

“Beyond Notations: Hygienic Macro Expansion for Theorem Proving Languages”
Ullrich, Sebastian; de Moura, Leonardo

```
syntax "\{ " ident (" : " term)? " // " term " \}" : term

macro_rules
| `\{ $x : $type // $p \}` => `\`(Subtype (fun ($x:ident : $type) => $p))
| `\{ $x // $p \}` => `\`(Subtype (fun ($x:ident : _) => $p))
```
Hygienic macro system

Hygiene = no accidental name capture.

```markdown
macro "const" e:term : term => `(fun x => $e)
#eval (fun x => const (x+1)) 10 true
-- 11
```
We have many different syntax categories.

```plaintext
syntax:arg stx:max "+" : stx
syntax:arg stx:max "*" : stx
syntax:arg stx:max "?" : stx
syntax:2 stx:2 " <|> " stx:1 : stx

macro_rules
| `(stx| $p +) => `(stx| many1($p))
| `(stx| $p *) => `(stx| many($p))
| `(stx| $p ?) => `(stx| optional($p))
| `(stx| $p1 <|> $p2) => `(stx| orelse($p1, $p2))
```
Big operator notation: an example

```haskell
def bigop (init : β) (seq : List α) (op : β → β → β) (f : α → Option β) : β := Id.run do
  let mut result := init
  for a in seq do
    if let some b := f a then
      result := op result b
  return result

#eval bigop 0 [2, 3, 4] (·++) fun elem => if elem % 2 == 0 then some (elem * 2) else none
-- 12

#eval
  bigop
    (init := 0)
    (seq := [2, 3, 4])
    (op := Nat.add)
    (f := fun elem => if elem % 2 == 0 then some (elem * 2) else none)
```
Big operator notation: an example

```python
def iota : Nat → Nat → List Nat
| _, 0   => []
| m, n+1 => m :: iota (m+1) n

def range (m n : Nat) := iota m (n - m)

#eval range 2 6
-- [2, 3, 4, 5]
```
Big operator notation: an example

-- Declare a new syntax category for "indexing" big operators
declare_syntax_cat index

syntax term:51 "\leq" ident "<" term : index
syntax term:51 "\leq" ident "<" term "|" term : index
syntax ident "<-" term : index
syntax ident "<-" term "|" term : index

-- Primitive notation for big operators
syntax "_big" "[" term "," term "]" "(" index ")" term : term

-- We define how to expand `_big` with the different kinds of index
macro_rules
| `_big [$op, $ini] ($lower:term \leq $i < $upper) $F)`
 =>
 `(bigop $i (range $lower $upper) $op (fun $i:ident => some $F))`
| `_big [$op, $ini] ($i:ident \rightarrow $col | $p) $F)`
 =>
 `(bigop $ini $col $op (fun $i:ident => if $p then some $F else none))`
Big operator notation: an example

-- Define `\sum`
syntax "\sum" "(" index ")" term : term
macro_rules | `(\sum ($idx) $F)` => `(_big [Add.add, 0] ($idx) $F)`

-- We can already use `\sum` with the different kinds of index.
#check `\sum (i <- [0, 2, 4] | i != 2) i`
#eval `\sum (1 \leq i < 4) 2*i`
-- 12

-- Define `\prod`
syntax "\prod" "(" index ")" term : term
macro_rules | `(\prod ($idx) $F)` => `(_big [Mul.mul, 1] ($idx) $F)`

-- The examples above now also work for `\prod`
#check `\prod (i <- [0, 2, 4] | i != 2) i`
#eval `\prod (1 \leq i < 4) 2*i`
-- 48
Big operator notation: an example

-- We can extend our grammar for the syntax category `index`.
syntax ident "\|" term : index
syntax ident "::" term : index
syntax ident "::" term "\|" term : index
-- And new rules
macro_rules
| `(big [op, idx] (i:ident : type) $F)` => `(bigo $idx (elems (\alpha := type)) $op (fun $i:ident => some $F))`
| `(big [op, idx] (i:ident : type | $p) $F)` => `(bigo $idx (elems (\alpha := type)) $op (fun $i:ident => if $p then some $F else none))`
| `(big [op, idx] (i:ident | $p) $F)` => `(bigo $idx eles $op (fun $i:ident => if $p then some $F else none))`

-- The new syntax is immediately available for all big operators that we have defined
def myPred (i : Fin 10) : Bool := i % 2 = 1
#check Sigma (i : Fin 10) i+1
#check Sigma (i : Fin 10 | i != 2) i+1
#check Sigma (i | myPred i) i+i
#check Pi (i : Fin 10) i+1
#check Pi (i : Fin 10 | i != 2) i+1
Many Lean 3 tactics are just macros, and they can be recursive.

```lean
syntax "funext " (colGt term:max)+ : tactic

macro_rules
  | `(tactic|funext $x) => `(tactic| apply funext; intro $x:term)
  | `(tactic|funext $x $xs*) => `(tactic| apply funext; intro $x:term; funext $xs*)

def f (x y : Nat × Nat) := x.1 + y.2
def g (x y : Nat × Nat) := y.2 + x.1

eExample : f = g := by
  funext (a, _) (_, d)
  show a + d = d + a
  rw [Nat.add_comm]
```
Hygienic and **typed** macro system

```haskell
syntax "#show" term : command

macro_rules
| `(#show $e) => `(#print $e) -- Error `e` is Term, but ident or str expected

macro_rules
| `(#show $e:ident) => `(#print $e) -- Ok
| `(#show $e) => `(#check $e)

#show toString

#show 2+2
```
Structured (and hygienic) tactic language

```lean
-- less-than is well-founded
def lt_wfRel : WellFoundedRelation Nat where
  rel := Nat.lt
  wf := by
    apply WellFounded.intro
    intro n
    induction n with
    | zero =>
      apply Acc.intro 0
      intro _ h
      apply absurd h (Nat.not_lt_zero _)
    | succ n ih =>
      apply Acc.intro (Nat.succ n)
      intro m h
      have : m = n ∨ m < n := Nat.eq_or_lt_of_le (Nat.le_of_succ_le_succ h)
      match this with
      | Or.inl e => subst e; assumption
      | Or.inr e => exact Acc.inv ih e
```
Structured (and hygienic) tactic language

match ... with works in tactic mode, and it is just a macro

```
theorem concatEq (xs : List α) (h : xs ≠ []) : concat (dropLast xs) (last xs h) = xs := by
  match xs, h with
  | [], h    => contradiction
  | [x], h   => rfl
  | x₁::x₂::xs, _ => simp [concat, last, concatEq (x₂::xs) List.noConfusion]
```
Structured (and hygienic) tactic language

Multi-target induction

```plaintext
theorem mod.inductionOn
  (motive : Nat → Nat → Sort u)
  (x y : Nat)
  (ind : ∀ x y, 0 < y ∧ y ≤ x → motive (x - y) y → motive x y)
  (base : ∀ x y, ~(0 < y ∧ y ≤ x) → motive x y)
  : motive x y :=
  div.inductionOn x y ind base

theorem mod.lt (x : Nat) {y : Nat} : y > 0 → x % y < y :=
  by
  induction x, y using mod.inductionOn with
  | base x y h₁ =>
    intro h₂
    have h₁ : ¬ 0 < y ∨ ¬ y ≤ x := Iff.mp (Decidable.not_and_iff_or_not _ _) h₁
    match h₁ with
    | Or.inl h₁ => exact absurd h₂ h₁
    | Or.inr h₁ =>
      have hgt : y > x := gt_of_not_le h₁
      have heq : x % y = x := mod_eq_of_lt hgt
      rw [← heq] at hgt
      exact hgt
  | ind x y h₂ =>
    intro h₃
    have (_, h₁) := h
```
Structured (and hygienic) tactic language

Default elimination principle.

```lean
@[eliminator] protected def Nat.recDiag {motive : Nat → Nat → Sort u}
  (zero_zero : motive 0 0)
  (succ_zero : (x : Nat) → motive x 0 → motive (x + 1) 0)
  (zero_succ : (y : Nat) → motive 0 y → motive 0 (y + 1))
  (succ_succ : (x y : Nat) → motive x y → motive (x + 1) (y + 1))
  (x y : Nat) : motive x y :=

def f (x y : Nat) :=
  match x, y with
  | 0, 0   => 1
  | x+1, 0 => f x 0
  | 0, y+1 => f 0 y
  | x+1, y+1 => f x y
termination_by f x y => (x, y)

eexample (x y : Nat) : f x y > 0 := by
  induction x, y with
  | zero_zero => decide
  | succ_zero x ih => simp [f, ih]
  | zero_succ y ih => simp [f, ih]
  | succ_succ x y ih => simp [f, ih]

eexample (x y : Nat) : f x y > 0 := by
  induction x, y <=;> simp [f, *]
```
Structured (and hygienic) tactic language

By default tactic generated names are “inaccessible”
You can disable this behavior using the following command

```
set_option tactic.hygienic false in
```

```
example {a p q r : Prop} : p → (p → q) → (q → r) → r := by
  intro _ h1 h2
  apply h2
  apply h1
  exact a_1 -- Bad practice, using name generated by ‘intro’.
```

```
example {a p q r : Prop} : p → (p → q) → (q → r) → r := by
  intro _ h1 h2
  apply h2
  apply h1
  exact a_1 -- error "unknown identifier"
```

```
example {a p q r : Prop} : p → (p → q) → (q → r) → r := by
  intro _ h1 h2
  apply h2
  apply h1
  assumption
```
Lean 3 simp is a major bottleneck
Two sources of inefficiency: simp set is reconstructed all the time, poor indexing
Indexing in DTT is complicated because of definitional equality
Lean 3 simp uses keyed matching (Georges Gonthier)
Keyed matching works well for the rewrite tactic because there are few failures
Lean 4 uses discrimination trees to index simp sets
It is the same data structure used to index type class instances

Here is a synthetic benchmark

```lean
@[simp] axiom s0 (x : Prop) : f (g1 x) = f (g0 x)
@[simp] axiom s1 (x : Prop) : f (g2 x) = f (g1 x)
@[simp] axiom s2 (x : Prop) : f (g3 x) = f (g2 x)
...

@[simp] axiom s498 (x : Prop) : f (g499 x) = f (g498 x)
def test (x : Prop) : f (g0 x) = f (g499 x) := by simp
#check test
```

<table>
<thead>
<tr>
<th>num. lemmas + 1</th>
<th>Lean 3</th>
<th>Lean4</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>0.89s</td>
<td>0.18s</td>
</tr>
<tr>
<td>1000</td>
<td>2.97s</td>
<td>0.39s</td>
</tr>
<tr>
<td>1500</td>
<td>6.67s</td>
<td>0.61s</td>
</tr>
<tr>
<td>2000</td>
<td>11.86s</td>
<td>0.71s</td>
</tr>
<tr>
<td>2500</td>
<td>18.25s</td>
<td>0.93s</td>
</tr>
<tr>
<td>3000</td>
<td>26.90s</td>
<td>1.15s</td>
</tr>
</tbody>
</table>
There is no equation compiler

Pattern matching, and termination checking are completely decoupled

Example:

```haskell
def eraseIdx : List α → Nat → List α
| [], _ => []
| _::as, 0 => as
| a::as, n+1 => a :: eraseIdx as n
```

expands into

```haskell
def eraseIdx (as : List α) (i : Nat) : List α :=
match as, i with
| [], _ => []
| _::as, 0 => as
| a::as, n+1 => a :: eraseIdx as n
```
We generate an auxiliary “matcher” function for each `match ... with`.
The matcher doesn’t depend on the right-hand side of each alternative.

```haskell
{α : Type u_1} →
(motive : List α → Nat → Sort u_2) →
-- discriminants
(as : List α) →
(i : Nat) →
-- alternatives
((x : Nat) → motive [] x) →
((head : α) → (as : List α) → motive (head :: as) θ) →
((a : α) → (as : List α) → (n : Nat) → motive (a :: as) (Nat.succ n)) →
motive as i
```
The new representation has many advantages
We can “change” the motive when proving termination
We “hides” all nasty details of dependent pattern matching

```ocaml
def eraseIdx (as : List α) (i : Nat) : List α :=
  match as, i with
  | [], _ => []
  | _::as, 0 => as
  | a::as, n+1 => a :: eraseIdx as n
```

```ocaml
def eraseIdx.{u_1} : {α : Type u_1} → List α → Nat → List α :=
  fun {α} as i =>
    List.brecOn as
    (fun as f i =>
      (match as, i with
       | [], x => fun x => []
       | head :: as, θ => fun x => as
       | a :: as, Nat.succ n => fun x => a :: PProd.fst x.fst n)
      f)
    i
```
match ... with

Equality proofs (similar to if-then-else)

```ocaml
[@inline] def withPtrEqDecEq \{\alpha : Type u\} (a b : \alpha) (k : Unit \to Decidable (a = b)) : Decidable (a = b) :=
  let b := withPtrEq a b (fun _ => toBoolUsing (k ())) (toBoolUsing_eq_true (k ())) in
  match h : b with
  | true  =>.isTrue (ofBoolUsing_eq_true h)
  | false => isFalse (ofBoolUsing_eq_false h)
```
LEM4 split tactic

Useful for reasoning about `match-with` containing overlapping patterns

```ocaml
def f (x y z : Nat) : Nat :=
  match x, y, z with
  | 5, _, _ => y
  | _, 5, _ => y
  | _, _, 5 => y
  | _, _, _ => 1

example : x \neq 5 \land y \neq 5 \land z \neq 5 \land z = w \rightarrow f x y w = 1 := by
  intros
  simp [f]
  split
  . contradiction
  . contradiction
  . contradiction
  . refl

def g (xs ys : List Nat) : Nat :=
  match xs, ys with
  | [a, b], _ => a+b+1
  | _, [b, _] => b+1
  | _, _ => 1

example (xs ys : List Nat) (h : g xs ys = 0) : False := by
  unfold g at h; split at h <;; simp_arith at h
```
Recursion

Termination checking is independent of pattern matching

mutual and let rec keywords

We compute blocks of strongly connected components (SCCs)
Each SCC is processed using one of the following strategies
 non rec, structural, unsafe, partial, well-founded.

```ocaml
def eraseIdx.{u_1} : {α : Type u_1} → List α → Nat → List α :=
fun {α} as i =>
  List.brecOn as
    (fun as f i =>
      (match as, i with
       | [], x => fun x => []
       | head :: as, θ => fun x => as
       | a :: as, Nat.succ n => fun x => a :: PProd.fst x.fst n)
     f)
  i
```
Avoiding auxiliary declarations with `let rec`

```ocaml
private def addSCC (a : α) : M α Unit := do
  let rec add |
    | [], newSCC => modify fun s => { s with stack := [], sccs := newSCC :: s.sccts }
    | b::bs, newSCC => do
      resetOnStack b;
      let newSCC := b::newSCC;
      if a != b then
        add bs newSCC
      else
        modify fun s => { s with stack := bs, sccs := newSCC :: s.sccts }
    add (~ get).stack []
```
Haskell-like “where” clause

Expands into `let rec`

def Tree.toListTR (t : Tree β) : List (Nat × β) :=
 go t []
where
 go (t : Tree β) (acc : List (Nat × β)) : List (Nat × β) :=
 match t with
 | leaf => acc
 | node l k v r => go l ((k, v) :: go r acc)

theorem Tree.toList_eq_toListTR (t : Tree β)
 : t.toList = t.toListTR := by
 simp [toListTR, go t []]
where
 go (t : Tree β) (acc : List (Nat × β))
 : toListTR.go t acc = t.toList ++ acc := by
 induction t generalizing acc <;
 simp [toListTR.go, toList, *, List.append_assoc]
Termination Checker

```python
def ack : Nat → Nat → Nat
    | 0,    y => y+1
    | x+1,  0 => ack x 1
    | x+1, y+1 => ack x (ack (x+1) y)
termination by ack a b => (a, b)
```

```python
def index0f [DecidableEq α] (a : Array α) (v : α) : Option (Fin a.size) :=
go 0
where
go (i : Nat) :=
    if h : i < a.size then
        if a[i] = v then some (i, h) else go (i+1)
    else
        none
termination_by go i => a.size - i
```
Termination Checker - Mutual Recursion

```haskell
inductive Term where
| const : String → Term
| app : String → List Term → Term

mutual
def replaceConst (a b : String) : Term → Term
| const c => if a = c then const b else const c
| app f cs => app f (replaceConstLst a b cs)

def replaceConstLst (a b : String) : List Term → List Term
| [] => []
| c :: cs => replaceConst a b c :: replaceConstLst a b cs
end

mutual
def numConsts_replaceConst (a b : String) (e : Term)
  : numConsts (replaceConst a b e) = numConsts e := by
  match e with
  | const c => simp [replaceConst]; split <;; simp [numConsts]
  | app f cs => simp [replaceConst, numConsts, numConsts_replaceConstLst a b cs]
end

def numConsts_replaceConstLst (a b : String) (es : List Term)
  : numConstsLst (replaceConstLst a b es) = numConstsLst es := by
  match es with
  | [] => simp [replaceConstLst, numConstsLst]
  | c :: cs =>
    simp [replaceConstLst, numConstsLst, numConsts_replaceConst a b c,
      numConsts_replaceConstLst a b cs]
end
```
Lean 3 has very limited support for postponing the elaboration of terms

```lean
def ex1 (xs : list (list nat)) : io unit :=
  io.print_ln (xs.foldl (fun r x, r.union x) [[]]) -- dot-notation fails at `r.union x`

def ex2 (xs : list (list nat)) : io unit :=
  io.print_ln (xs.foldl (fun (r : list nat) x, r.union x) [[]]) -- fix: provide type
```
Elaborator: postpone and resume

```haskell
def ex1 (xs : List (List Nat)) : IO Unit :=
  IO.println (xs.foldl (fun r x => r.union x) [])
```

Same example using named arguments

```haskell
def ex1 (xs : List (List Nat)) : IO Unit :=
  IO.println $ xs.foldl (init := []) (fun r x => r.union x)
```

Same example using anonymous function syntax sugar, and F# style $

```haskell
def ex1 (xs : List (List Nat)) : IO Unit :=
  IO.println $ xs.foldl (init := []) (\cdot.union \cdot)
```
Heterogeneous operators

In Lean3, +, *, -, / are all homogeneous polymorphic operators

```lean
has_add.add : Π {α : Type u_1} [c : has_add α], α → α → α
```

What about matrix multiplication?

Nasty interactions with coercions.

```lean
variables (x : nat) (i : int)
```

```lean
#check i + x -- ok
#check x + i -- error
```

Rust supports heterogeneous operators
Heterogeneous operators in action

instance [Add α] : Add (Matrix m n α) where
 add x y i j := x[i, j] + y[i, j]

instance [Mul α] [Add α] [Zero α] : HMul (Matrix m n α) (Matrix n p α) (Matrix m p α) where
 hMul x y i j := dotProduct (x[i, ∙]) (y[∙, j])

instance [Mul α] : HMul α (Matrix m n α) (Matrix m n α) where
 hMul c x i j := c * x[i, j]

example (a b : Nat) (x : Matrix 10 20 Nat) (y : Matrix 20 10 Nat) (z : Matrix 10 10 Nat) : Matrix 10 10 Nat :=
 a * x * y + b * z

example (a b : Nat) (x : Matrix m n Nat) (y : Matrix n m Nat) (z : Matrix m m Nat) : Matrix m m Nat :=
 a * x * y + b * z
Lean 4 supports scoped instances, notation, unification hints, simp lemmas, ...

```lean
namespace NameOp
  scoped infixl:65 (priority := high) " + " => Nat.add
  scoped infixl:70 (priority := high) " * " => Nat.mul
end NameOp

variable (n : Nat) (i : Int)
#check n + i -- Using heterogeneous operators
#check i + n
open NameOp
#check n + n
#check n + i -- Error
```
New feature: implicit lambdas

```lean
structure state_t {σ : Type u} {m : Type u → Type v} {α : Type u} : Type (max u v) :=
  (run : σ → m (α × σ))

def state_t.pure {σ} {m} [monad m] {α} (a : α) : state_t σ m α :=
  (λ s, pure (a, s))

def state_t.bind {σ} {m} [monad m] {α β} (x : state_t σ m α) (f : α → state_t σ m β) : state_t σ m β :=
  (λ s, do (a, s') ← x.run s, (f a).run s')

instance {σ} {m} [monad m] : monad (state_t σ m) :=
  { pure := @state_t.pure _ _ _,
    bind := @state_t.bind _ _ _ }
```

The Lean 3 curse of @s and _s
Implicit lambdas

The Lean 3 double curly braces workaround

```lean
structure state_t (σ : Type u) (m : Type u → Type v) (α : Type u) : Type (max u v) :=
  (run : σ → m (α × σ))

def state_t.pure {σ} {m} [monad m] {{α}} (a : α) : state_t σ m α :=
  (λ s, pure (a, s))

def state_t.bind {σ} {m} [monad m] {{α β}} (x : state_t σ m α) (f : α → state_t σ m β) : state_t σ m β :=
  (λ s, do { a, s' ← x.run s, (f a).run s' })

instance {σ} {m} [monad m] : monad (state_t σ m) :=
  { pure := state_t.pure,
    bind := state_t.bind }
```
The Lean 4 way: no @s, _s, {{}}s

```lean
def StateT (σ : Type u) (m : Type u → Type v) (α : Type u) : Type (max u v) :=
    σ → m (α × σ)

protected def pure [Monad m] (a : α) : StateT σ m α :=
    fun s => pure (a, s)

protected def bind [Monad m] (x : StateT σ m α) (f : α → StateT σ m β) : StateT σ m β :=
    fun s => do let (a, s) ← x s; f a s

instance [Monad m] : Monad (StateT σ m) where
    pure := StateT.pure
    bind := StateT.bind
```
We can make it nicer:

```haskell
def StateT (σ : Type u) (m : Type u → Type v) (α : Type u) : Type (max u v) :=
  σ → m (α × σ)

instance [Monad m] : Monad (StateT σ m) where
  pure a := fun s => pure (a, s)
  bind x f := fun s => do let (a, s) ← x s; f a s
```

It is equivalent to

```haskell
def StateT (σ : Type u) (m : Type u → Type v) (α : Type u) : Type (max u v) :=
  σ → m (α × σ)

instance [Monad m] : Monad (StateT σ m) where
  pure a s := pure (a, s)
  bind x f s := do let (a, s) ← x s; f a s
```
Fine-grain checkpoints

Mario Carneiro
The reasons to break up proofs also have to do with readability to other people, not just lean. These huge proofs are really not desirable in any sense. Of course we should try to address these issues with tooling support where possible, but it's papering over the issue. I am reminded of an adage I learned from who knows where: if you hit a system limit like a timeout or stack overflow, you should first consider whether you are doing something wrong before increasing the limit.

The "elementarity" of the proof has nothing at all to do with it. You can have large proofs and modular proofs at the high level and the low level equally well.

in CS, a common rule of thumb is to not let your functions get too large or too deeply nested. Saying "it's okay because I'm building on a big framework" is not an excuse, and the rule is not related to the effectiveness of the compiler on your code (although if you let it get really bad then you might hit a compiler limit).

Patrick Massot
Having abstract principles like this sounds nice, but math simply doesn't work like this.

And cutting a proof into ten lemmas that have the same assumptions and are used only once doesn't increase readability.

```
simp at h
split at h <;> simp <;> try assumption
rename_i k1 v1 m1 k2 v2 m2
save -- Local checkpoint
by_cases hltv : Nat.bltn v1 v2 <;> simp [hltv] at h
  have ih := ih (h := h); simp [denote_eq] at ih +; assumption
```

...
Unification hints & bundled structures

structure Magma where
 carrier : Type u
 mul : carrier → carrier → carrier

instance : CoeSort Magma (Type u) where
coe m := m.carrier

def mul {s : Magma} (a b : s) : s := s.mul a b
infixl:70 (priority := high) " * " => mul

example {S : Magma} (a b c : S) : b = c → a * b = a * c := by simp_all

def Nat.Magma : Magma where
 carrier := Nat
 mul a b := Nat.mul a b

example (x : Nat) : Nat := x * x -- type mismatch, ?m.carrier =?= Nat

unif_hint (s : Magma) where
 s =?= Nat.Magma | - s.carrier =?= Nat

example (x : Nat) : Nat := x * x
Unification hints & bundled structures

```python
def Prod.Magma (m : Magma) (n : Magma) : Magma where
carrier := m.carrier × n.carrier
mul a b := (a.1 × b.1, a.2 × b.2)

unif_hint (s : Magma) (m : Magma) (n : Magma) (β : Type u) (δ : Type v) where
  m.carrier =?= β
  n.carrier =?= δ
  s =?= Prod.Magma m n
|- s.carrier =?= β × δ

example (x y : Nat) : Nat × Nat × Nat :=
  (x, y, x) * (x, y, y)
```
Unification hints & type classes: bridge

```haskell
def magmaOfMul (α : Type u) [Mul α] : Magma where -- Bridge between `Mul α` and `Magma`
  carrier := α
  mul a b := Mul.mul a b

unif_hint (s : Magma) (α : Type u) [Mul α] where
  s =?= magmaOfMul α
  |-
  s.carrier =?= α

example (x y : Int) : Int :=
  x * y * x -- Note that we don't have a hint connecting Magma's carrier and Int
```
Definitional Eta for Structures

Concretely, the following are examples of definitional equalities that would be nice to have:

- $s = \{ x \mid x \in s \}$
- $\text{op}(\text{unop} \ x) = x$
- $\text{to_dual}(\text{of_dual} \ x) = x$
- $e.\text{symm}.\text{symm} = e$

Relevant Zulip discussions (non-exhaustive):

- Sets and order_dual: https://leanprover.zulipchat.com/#narrow/stream/113488-general/topic/with_top.20irreducible
- Sets and additive/multiplicative: https://leanprover.zulipchat.com/#narrow/stream/113488-general/topic/universe.20juggling
- Equivalences: https://leanprover.zulipchat.com/#narrow/stream/113488-general/topic/Unexpected.20non-defeq
Definitional Eta for Structures

class TopologicalSpace (α : Type) where
 -- ..

structure Homeomorph (α β : Type) [TopologicalSpace α] [TopologicalSpace β] extends Equiv α β where
 continuousToFun : to_do -- ..
 continuousInv : to_do -- ..

def Homeomorph.symm [TopologicalSpace α] [TopologicalSpace β] (f : Homeomorph α β) : Homeomorph β α where
 toFun := f.inv
 inv := f.toFun
 continuousToFun := f.continuousInv
 continuousInv := by trivial

example [TopologicalSpace α] [TopologicalSpace β] (f : Homeomorph α β) : f.symm.symm = f := rfl

Fails in Lean 3
Computed Fields

Many thanks to Gabriel Ebner

```haskell
inductive Exp
| var (i : Nat)  
| app (a b : Exp)
with
  @[computedField] hash : Exp → Uint64
  | .var i => i.toUint64
  | .app a b => mixHash a.hash b.hash
```

```haskell
inductive Name where
| anonymous : Name
| str : Name → String → Name
| num : Name → Nat → Name
with
  @[computedField] hash : Name → Uint64
  | .anonymous => 1723
  | .str p s => mixHash p.hash s.hash
  | .num p v => mixHash p.hash v.hash
```
Vector/Array notation

example \((a : \text{Array Int})\) \((i : \text{Nat})\) : \text{Int} :=
\[a[i] \]

example \((a : \text{Array Int})\) \((i : \text{Nat})\) \((h : i < a.\text{size})\) : \text{Int} :=
\[a[i] \]

example \((a : \text{Array Int})\) \((i : \text{Fin a.size})\) : \text{Int} :=
\[a[i] \]

example \((a : \text{Array Int})\) \((i : \text{Nat})\) : \text{Int} :=
\[a[i]! \]

example \((a : \text{Array Int})\) \((i : \text{Nat})\) : \text{Option Int} :=
\[a[i]? \]

example \((a : \text{Array Int})\) \((b : \text{Array Int})\) \((h : a.\text{size} \leq b.\text{size})\) \((i : \text{Fin a.size})\) : \text{Int} :=
\[a[i] + b[i] \]

example \((f : \text{Nat} \rightarrow \text{Array Int})\) \((h_1 : \forall \ n, \ n < (f \ n).\text{size})\) \((i \ j : \text{Nat})\) \((h_2 : j < i)\) : \text{Int} :=
\text{have := Nat.lt_trans h_2 (h_1 i) \text{ -- proof for } j < (f \ i).\text{size}}
\((f \ i)[j] \)
Delaborator: kernel terms back to syntax

```lean
| `(\_ fun (x:ident : $type) => $p) => `(\{ $x : $type /\ $p \})
| `(\_ fun $x:ident => $p) => `(\{ $x /\ $p \})
| _ => throw ()

| `(getElem $array $index \_ \_) => `($array[$index])
| _ => throw ()

@[builtinDelab app.dite]
def delabDite : Delab := whenPPOption getPPNotation do
  -- Note: we keep this as a delaborator for now because it actually accesses the expression.
  guard $ (+ getExpr).getNumArgs == 5
  let c ← withAppFn $ withAppFn $ withAppFn $ withAppArg delab
  let (t, h) ← withAppFn $ withAppArg $ delabBranch none
  let (e, _) ← withAppArg $ delabBranch h
  `'(if $(mkIdent h):ident : $c then $t else $e)
where
  delabBranch (h? : Option Name) : DelabM (Syntax × Name) := do
  let e ← getExpr
  guard e.isLambda
  let h ← match h? with
  | some h => return (-- withBindingBody h delab, h)
  | none => withBindingBodyUnusedName fun h => do
    return (-- delab, h.getId)
```
The Lean 4 LSP Server is feature complete

Big team effort: Marc Huisinga, Wojciech Nawrocki, Ed Ayers, Sebastian Ullrich, Gabriel Ebner, Lars König, Leo de Moura
The Lean 4 LSP Server is feature complete

```
private def tryCoeFun? (α : Expr) (a : Expr) : TermElabM (Option Expr) := do
  let v ← mkFreshLevelMVar
  let type ← mkArrow α (mkSort v)

let v ← mkFreshLevelMVar
let type ← mkArrow α (mkSort v)
let γ ← mkFreshExprMVar type
let u ← getLevel α
let coeFunInstType := mkAppN (Lean.mkConst "CoeFun [u, v]) #[α,
let mvar ← mkFreshExprMVar coeFunInstType MetavarKind.synthetic
let mvarId := mvar.mvarId!
try
  if (-synthesizeCoeInstMVarCore mvarId) then
    `expandCoe x: {mkAppN (Lean.mkConst "CoeFun {u, v}) [x]
```
The Lean 4 LSP Server is feature complete
New feature: unused variable linter

Many thanks to Lars König
New LSP features coming soon …

Lean is becoming much more visual/interactive.

Many thanks to: Ed Ayers and Wojciech Nawrocki
New LSP features coming soon ...
Lake = Lean + Make

Lake is the new Lean build system - https://github.com/leanprover/lake

By Lewis “Mac” Malone

Lake is extensible and implemented in Lean 4

```lean
import Lake
open Lake DSL System

package scilean
  -- defaultFacet := PackageFacet.staticLib
require mathlib from git
  "https://github.com/leanprover-community/mathlib4.git"@"8f609e0ed826d127c8bc322cb6f91c5369d37a"

  -- #check LeanLibConfig
@[defaultTarget]
lean_lib Scilean {
  roots := #"Scilean"
}

script tests (_args) do
  let cwd ← IO.currentDir
  -- let testDir := cwd / "test"
  let searchPath := SearchPath.toString
    ["build" / "lib",
     "lean_packages" / "mathlib" / "build" / "lib"]
```
Lake - precompiled extensions

Your Lean extensions are compiled to native machine code.

You can use "extern C" functions in your extensions.

```lean
import Lake
open Lake DSL

package aesop {
  precompileModules := true
}

@defaultTarget
lean_lib Aesop {}
```

```lean
import Lake
open Lake DSL

package AesopDemo {}

lean_lib AesopDemo {}

require aesop from git
  "https://github.com/JLimperg/aesop"@"1b02414e73e42808cebadea7fe594406dc589332"
```
doc-gen4: Documentation Generator for Lean 4

By Henrik Böving https://github.com/leanprover/doc-gen4

```lean
def List.find? [α : Type u] (p : α → Bool) : List α → Option α
| Equations

def List.findSome? [α : Type u] [β : Type v] (f : α → Option β) : List α → Option β
| Equations
  - List.findSome? f [] = none
  - List.findSome? f (head :: tail) = match f head with
    | some b => some b
    | none => List.findSome? f tail

def List.replace [α : Type u] [Inst : BEq α] : List α → α → List α
| Equations
```
syntax jsxAttrName := ident <|> str
syntax jsxAttrVal := str <|> group("{" term "}")

..." <|> jsxElement
syntax "<" ident jsxAttr "/>." : jsxElement
syntax "<" ident jsxAttr "/>" jsxChild "</" ident ">" : jsxElement

...macro_rules
| '(<$n $attrs* />) =>
 `(Html.element $(quote (toString n.getId)) ...) |
| '(<$n $attrs* >$children*$m>) => _
def classInstanceToHtml (name : Name) : HtmM Html :=
 return {name.toString}

def classInstancesToHtml (instances : Array Name) : HtmM Html :=
 return <details class="instances">
 <summary>Instances</summary>

 [⁻ instances.mapM classInstanceToHtml]

 </details>
By Niklas Bülow

Literate programming for Lean 4.

Relies on the same infrastructure we use for the IDEs.

Future: Doc-gen4 + LeanInk integration

We use the function `List.last` to prove the following theorem that says that if a list `as` is not empty, then removing the last element from `as` and appending it back is equal to `as`. We use the attribute `[simp]` to instruct the `simp` tactic to use this theorem as a simplification rule.

```lean
@[simp] theorem List.droplast_append_last (h : as ≠ []) : as.droplast ++ [as.last h] = as :=
by match as with
| [] => contradiction
| [a] => simp_all [last, droplast] =>
| a₁ :: a₂ :: as =>

α₁ : Type u₁ asf : List α₁ a₁, a₂ :: as : List α₁ h : a₁ :: a₂ :: as ≠ []
droplast (a₁ :: a₂ :: as) ++ [last (a₁ :: a₂ :: as) h] = a₁ :: a₂ :: as

simp [last, droplast] =>
exact droplast_append_last (α as := a₁ :: a₂ as) (-by simp-)
```

We now define the following auxiliary induction principle for lists using well-founded recursion on `as.length`. We can read it as follows, to prove `motive as`, it suffices to show that: (1) `motive []`; (2) `motive [a]` for any `a`; (3) if `motive as` holds, then `motive ([a] ++ as ++ [b])` also holds for any `a`, `b`, and `as`. Note that the structure of this induction principle is very similar to the `Palindrome` inductive predicate.
Cool projects using Lean 4

SciLean - Tomas Skrivan

Formalization: Gardam’s disproof of the Kaplansky Unit Conjecture - Siddhartha Gadgil

Aesop - White Box Automation for Lean 4 - Jannis Limperg

Computational Law - Chris Bailey

Zero Knowledge Type Certificates - Yatima Inc.

CVC 5 / Lean 4 integration - Abdal Mohamed, Tomaz Mascarenhas, Haniel Barbosa, Cesare Tinelli

Papyrus - Lewis “Mac” Malone
SciLean

A framework for scientific computing based on Lean 4
https://github.com/lecopivo/SciLean

```
-- wave equation
def H (m k : ℝ) (x p : ℝ^n) : ℝ :=
    let Δx := (1 : ℝ)/(n : ℝ)
(Δx/(2*m)) * 1 p^2 + (Δx * k/2) * (Σ i , 1x[i] - x[i - 1])^2
argument x
    isSmooth, diff, hasAdjDiff, adjDiff
argument p
    isSmooth, diff, hasAdjDiff, adjDiff

def solver (m k : ℝ) (steps : Nat)
    : Impl (ode_solve (HamiltonianSystem (H m k))) := by
    -- Unfold Hamiltonian definition and compute gradients
    simp [HamiltonianSystem]
    -- Apply RK4 method
    rw [ode_solve_fixed_dt runge_kutta4_step]
    lift_limit steps "Number of ODE solver steps."; admit; simp
    finish_impl
```
SciLean - Houdini
Aesop

White box automation for Lean 4 - by Jannis Limperg

https://github.com/JLimperg/aesop

```
inductive Perm : List α → List α → Prop where
| nil  : Perm [] []
| cons : Perm xs xs' → Perm (x :: xs) (x :: xs')
| swap : Perm (x :: y :: xs) (y :: x :: xs)
| trans : Perm xs ys → Perm ys zs → Perm xs zs

attribute [aesop safe] Perm.nil
attribute [aesop unsafe] Perm.cons
attribute [aesop unsafe] Perm.swap
attribute [aesop unsafe] Perm.trans

theorem Perm.symm : Perm xs ys → Perm ys xs := by
  intro h
  induction h ↔ aesop

@[aesop safe]
theorem perm_insertInOrder {xs : List α} : Perm (x :: xs) (insertInOrder x xs) := by
  induction xs ↔ aesop
```
Computational Law in Lean 4

Chris Bailey - Law Student - UIUC
Intern this summer at Microsoft Research
Mentors: Jonathan Protzenko and Leo de Moura
The Federal Rules of Civil Procedure

Overview

Procedural rules govern how a case or controversy may be adjudicated in civil court

Example: “party π must perform action α before time τ + n, otherwise consequence κ”

In practice, the rules give rise to a high level of complexity

Federal courts have taken a hard-line approach to interpreting and applying procedural rules, ruling against litigants even when the court is in error (see *Bowles v. Russell*)

Litigants may forfeit important substantive rights, or simply lose outright

“Because the civil justice system directly touches everyone in contemporary American society [...] ineffective civil case management by state courts has an outsized effect on public trust and confidence compared to the criminal justice system” - NCSC civil justice report 2015
The Prevalence of Civil Legal Problems

Most low-income households have dealt with at least one civil legal problem in the past year—and many of these problems have had substantial impacts on people’s lives.

3 in 4 (74%) low-income households experienced 1+ civil legal problems in the past year.

2 in 5 (39%) experienced 5+ problems and 1 in 5 (20%) experienced 10+ problems.

Most common types of problems: consumer issues, health care, housing, income maintenance.

1 in 2 (55%) low-income Americans who personally experienced a problem say these problems substantially impacted their lives—with the consequences affecting their finances, mental health, physical health and safety, and relationships.

Data source: 2021 Justice Gap Measurement Survey
The Federal Rules of Civil Procedure

Mission

Use Lean to produce a reliable library of functional components and a collection of relevant correctness proofs

Library components can be used by downstream consumers to implement a larger body software, both practical and analytical (case management software, web portals for courts, document generation, etc.)

There is an institutional appetite for the adoption of software in these roles, but a lack of sophistication in the tools has been cited as a major reason for lack of adoption in the large (see NCSC civil justice report 2015)
The Federal Rules of Civil Procedure

Goals

Level the playing field between teams of expert lawyers and everyone else

Prevent forfeiture of substantive rights by underrepresented or pro se litigants

Expand access to the courts; see more cases adjudicated on the merits rather than dismissed due to procedural defects.

Help lawyers better serve clients by making fewer mistakes in less time

Improve matchmaking between those in need of legal services and service providers (more accurately place clients with clinical/pro bono resources)

Improve clarity in future revisions of procedural rules

Improve availability of labelled data for statistical analysis and ML/AI initiatives
The Federal Rules of Civil Procedure

Implementation

Layered architecture resembling a kernel/elaborator split, with a very simple model of computation.

A civil action and the procedural rules are encoded as a transition system \((S \times S_0 \times R)\)

\(S\) as the type of all possible states, \(S_0\) of valid initial states, and the transition relation \(R : S \rightarrow S \rightarrow \text{Prop}\)

With the procedural history acting viewed a sequence of steps and the procedural posture acting as state, a triple given triple is valid when \(s \in S_0 \land \text{EvalR} c s s'\)

A given procedural posture is reachable if it is in the reflexive transitive closure of \(R\), starting at a valid initial state
The Federal Rules of Civil Procedure

Components:

Timelib
A general-purpose date and time library for the Lean ecosystem
(github.com/ammkrn/timelib)

UsCourts
An API for federal judicial districts and courts
(github.com/ammkrn/UsCourts)

JohnDoe
Through the pleading phase of the Federal Rules of Civil Procedure
(github.com/ammkrn/JohnDoe)
Zero Knowledge Type Certificates

- Yatima IR: A content-addressed intermediate representation for Lean 4
- Lurk-Lang: A Lisp-like recursive zkSNARK language using microsoft/Nova
- By compiling a typechecker for Yatima IR to Lurk-Lang, we can produce zero-knowledge proofs of type correctness for Lean 4
- Zero Knowledge Type Certificates are cryptographic proofs that a program validly typechecks, which can be verified in constant-time
Conclusion

We implemented Lean 4 in Lean

Very extensible system: syntax, elaborators, delaborators, tactics, …

Compiler generates efficient code

User-extensions can be pre-compiled

We barely scratched the surface of the design space

The feedback on the milestone releases has been amazing, many new exciting applications.

Mathlib port is the next challenge