
Efficient verification
and metaprogramming in Lean

Leonardo de Moura - Microsoft Research

22nd International Symposium on Formal Methods,

16 July 2018, Oxford UK

http://leanprover.github.io/

http://leanprover.github.io/

Lean aims to bridge the gap between interactive
and automated theorem proving

Introduction: Lean
• Goals

• Extensibility

• Expressivity

• Scalability

• Proof stability

• Platform for

• Developing custom automation and Domain Specific Languages

• Software verification

• Formalized Mathematics

• Dependent Type Theory

• de Bruijn’s principle: small trusted kernel, and two external type checkers

	 “Hack without fear”

Metaprogramming

• Extend Lean using Lean

• Access Lean internals using Lean

• Type inference

• Unifier

• Simplifier

• Decision procedures

• Type class resolution

• …

• Proof/Program synthesis

How are automated provers used at Microsoft?

Testing Software Verification

Alive Ivy

Software verification & automated provers

• Easy to use for simple properties

• Main problems:

• Scalability issues

• Proof stability

• Hard to control the behavior of automated provers

• in many verification projects:

• Hyper-V

• Ironclad & Ironfleet (https://github.com/Microsoft/Ironclad)

• Everest (https://project-everest.github.io/)

https://github.com/Microsoft/Ironclad
https://project-everest.github.io/

Automated provers are mostly blackboxes

“The Strategy Challenge in SMT Solving”,
joint work with Grant Passmore

Solver is still an “end-game” strategy
Software verification tools are starting to use tactics

Who checks the VCGen?

<Input>

Encode
Semantics

Verification 
Condition

VCGen

OK

BUG

Pre: isPowerOf2(C)
%s = shl C, %N
%q = zext %s
%r = udiv %x, %q

 =>

%N2 = add %N, log2(C)
%N3 = zext %N2
%r = lshr %x, %N3

Alive (Nuno Lopes, MSR Cambridge)

Alive Bug
https://rise4fun.com/Alive/szp

“The bug in the VCGen was there for 4 years” Nuno Lopes

https://rise4fun.com/Alive/szp

How serious is the problem?

• View Alive as a “bug finder”

• Reasonable when peephole optimizations are written by humans

• Alive is very successful

• LLVM team uses Alive all the time

• Peephole optimizations are now being synthesized automatically

• Example: Souper https://github.com/google/souper

• Make sure VCGen is correct when verifying synthesized code

https://github.com/google/souper

Applications

AliveinLean

Re-implementation of Alive in Lean
Nuno Lopes (MSR Cambridge)
Open source: https://github.com/Microsoft/AliveInLean
Pending issues:
• Using processes+pipes to communicate with Z3
• Simpler framework for specifying LLVM instructions

https://github.com/Microsoft/AliveInLean

IVy Metatheory

IVy is a tool for protocol verification
Ken McMillan, MSR Redmond
https://github.com/Microsoft/ivy/wiki/The-IVy-language

https://github.com/Microsoft/ivy/wiki/The-IVy-language

Certigrad

Bug-free machine learning on stochastic computation graphs
Daniel Selsam (Stanford)

Source code: https://github.com/dselsam/certigrad
ICML paper: https://arxiv.org/abs/1706.08605
Video: https://www.youtube.com/watch?v=-A1tVNTHUFw
Certigrad at Hacker news: https://news.ycombinator.com/item?id=14739491

https://github.com/dselsam/certigrad
https://arxiv.org/abs/1706.08605
https://www.youtube.com/watch?v=-A1tVNTHUFw
https://news.ycombinator.com/item?id=14739491

Protocol verification

Joe Hendrix, Joey Dodds, Ben Sherman, Ledah Casburn, Simon Hudon
Galois inc

“We defined a hash-chained based distributed time stamping service down to the
byte-level message wire format, and specified the system correctness as an LTL
liveness property over an effectively infinite number of states, and then verified the
property using Lean. We used some custom tactics for proving the correctness
of the byte-level serialization/deserialization routines, defined an abstraction
approach for reducing reasoning about the behavior of the overall network transition
system to the behavior of individual components, and then verified those
components primarily using existing Lean tactics.”

https://github.com/GaloisInc/lean-protocol-support

https://github.com/GaloisInc/lean-protocol-support

SQL query equivalence

Axiomatic Foundations and Algorithms for Deciding Semantic Equivalences of
SQL Queries

Shumo Chu, Brendan Murphy, Jared Roesch, Alvin Cheung, Dan Suciu
University of Washington
https://arxiv.org/pdf/1802.02229.pdf

https://arxiv.org/pdf/1802.02229.pdf

Lean forward

PI: Jasmin Blanchette (University of Amsterdam)

Sanders Damen, Johannes Hölzl, Robert Lewis, Assia Mahboubi, Freek Weidijk

https://lean-forward.github.io/

https://lean-forward.github.io/lean-together/2019/index.html

https://lean-forward.github.io/
https://lean-forward.github.io/lean-together/2019/index.html

Formal Abstracts

Tom Hales (University of Pittsburgh)
“To develop software and services for transforming mathematical results as they
appear in journal article abstracts into formally structured data that machines can
read, process, search, check, compute with, and learn from as logical statements.”
https://sloan.org/grant-detail/8439
https://hanoifabs.wordpress.com/2018/05/31/tentative-schedule/
https://github.com/formalabstracts/formalabstracts

https://sloan.org/grant-detail/8439
https://hanoifabs.wordpress.com/2018/05/31/tentative-schedule/
https://github.com/formalabstracts/formalabstracts

mathlib

Lean mathematical components library
Mario Carneiro (CMU)
Johannes Hölzl (University of Amsterdam)
https://github.com/leanprover/mathlib
Many contributors: https://github.com/leanprover/mathlib/graphs/contributors
https://leanprover.zulipchat.com/

https://github.com/leanprover/mathlib
https://github.com/leanprover/mathlib/graphs/contributors
https://leanprover.zulipchat.com/

Education

Logic and Proof, undergraduate course
Jeremy Avigad (CMU)
https://leanprover.github.io/logic_and_proof/introduction.html

Type theory, graduate course
Jeremy Avigad (CMU)
https://leanprover.github.io/theorem_proving_in_lean/introduction.html

Programming Languages, graduate course
Zack Tatlock (University of Washington)

Introduction to Proof, 1st year undergraduate course
Kevin Buzzard (Imperial College)

https://leanprover.github.io/logic_and_proof/introduction.html
https://leanprover.github.io/theorem_proving_in_lean/introduction.html

External perception

From https://jiggerwit.wordpress.com/2018/04/14/the-architecture-of-proof-assistants/

https://jiggerwit.wordpress.com/2018/04/14/the-architecture-of-proof-assistants/

Lean timeline

• Lean 1 (2013) Leo and Soonho Kong
• Almost useless
• Brave (crazy?) users in 2014: Jeremy Avigad, Cody Roux and Floris van Doorn

• Lean 2 (2015) Leo and Soonho Kong
• First official release
• Emacs interface
• Floris van Doorn develops the HoTT library for Lean
• Jakob von Raumer Master Thesis
• Math library (Jeremy Avigad, Rob Lewis and many others)

• Lean 3 (2016) Leo, Daniel Selsam, Gabriel Ebner, Jared Roesch, Sebastian Ullrich
• Lean is now a programming language
• Meta programming
• White box automation
• VS Code interface

White-box automation

APIs (in Lean) for accessing data-structures and procedures
found in SMT solvers and ATPs.

Example: congruence closure

Example: congruence closure

rsimp tactic

Extending the tactic state

• 2200 lines of code

Superposition prover

dlist

transfer tactic

• Developed by Johannes Hölzl (approx. 200 lines of code)

• Q

• We also use it to transfer results from nat to int.

Lean to SMT2

 Lean

 LOL

 SMT2

lemma n_gt_0
(a : nat) : a >= 0 :=
by z3

decl n : int {n >= 0}
assert (not (n >= 0))

(declare-const n Int)
(assert (>= n 0))
(assert (not (>= n 0))

• Goal: translate a Lean local
context, and goal into SMT2
query.

• Recognize fragment and
translate to low-order logic
(LOL).

• Logic supports some higher
order features, is successively
lowered to FOL, finally SMT2.

mutual inductive type, term
with type : Type
| bool : type
| int : type
| var : string → type
| fn : list type → type → type
| refinement : type → (string → term) → type
with term : Type
| apply : string → list term → term
| true : term
| false : term
| var : string → term
| equals : term → term → term
| …
| forallq : string → type → term → term

meta structure context :=
(type_decl : rb_map string type)
(decls : rb_map string decl)
(assertions : list term)

meta def reflect_prop_formula' : expr → smt2_m lol.term
| `(¬ %%P) := lol.term.not <$> (reflect_prop_formula' P)
| `(%%P = %%Q) := lol.term.equals <$>
 (reflect_prop_formula' P) <*>
 (reflect_prop_formula' Q)
| `(%%P ∧ %%Q) := lol.term.and <$>
 (reflect_prop_formula' P) <*>
 (reflect_prop_formula' Q)
| `(%%P ∨ %%Q) := lol.term.or <$>
 (reflect_prop_formula' P) <*>
 (reflect_prop_formula' Q)
| `(%%P < %%Q) := reflect_ordering lol.term.lt P Q
| …
| `(true) := return $ lol.term.true
| `(false) := return $ lol.term.false
| e := …

Coinductive predicates

• Developed by Johannes Hölzl (approx. 800 lines of code)

• Uses impredicativity of Prop

• No kernel extension is needed

Ring solver

• Developed by Mario Carneiro (approx. 500 lines of code)

• https://github.com/leanprover/mathlib/blob/master/tactic/ring.lean

• ring2 uses computational reflection

https://github.com/leanprover/mathlib/blob/master/tactic/ring.lean

Fourier-Motzkin elimination

• Linear arithmetic inequalities

• Developed at Galois inc

• https://github.com/GaloisInc/lean-protocol-support/tree/master/

galois/arith

https://github.com/GaloisInc/lean-protocol-support/tree/master/galois/arith
https://github.com/GaloisInc/lean-protocol-support/tree/master/galois/arith

Lean 3.x limitations

• Lean programs are compiled into byte code

• Lean expressions are foreign objects in the Lean VM

• Very limited ways to extend the parser

• Users cannot implement their own elaboration strategies

• Users cannot extend the equation compiler (e.g., support for quotient
types)

Lean 4

• Leo and Sebastian Ullrich (and soon Gabriel Ebner)

• Implement Lean in Lean

• parser, elaborator, equation compiler, code generator, tactic
framework and formatter

• New intermediate representation (defined in Lean) can be
translated into C++ (and LLVM IR)

• Only runtime, kernel and basic primitives are implemented in C++

• Users may want to try to prove parts of the Lean code generator or
implement their own kernel in Lean

• Foreign function interface (invoke external tools)

Lean 4

• Runtime has support for boxed and unboxed data

• Lean 4 expressions are implemented using the Lean runtime

• Runtime uses reference counting for GC and performs destructive
updates when RC = 1 (i.e., object is not shared)

• We have support for low-level tricks used in SMT and ATP. Example:
pointer equality

def use_ptr_eq {α : Type u} {a b : α}
 (c : unit -> {r : bool // a = b → r = tt})
 : {r : bool // a = b → r = tt} := c () 
 
Given @use_ptr_eq _ a b c, compiler generates

if (addr_of(a) == addr_of(b)) return true; else return c();

Conclusion

• Users can create their on automation, extend and customize Lean

• Domain specific automation

• Internal data structures and procedures are exposed to users (e.g.,
congruence closure)

• Whitebox automation

• VCGen verification and synthesized programs

• Lean 4 automation written in Lean will be much more efficient

• Lean 4 will be more extensible

• New application domains

• Lean 4 as a more powerful Z3Py

• Lean 4 as a platform for developing domain specific languages

