
109

‘do’ Unchained: Embracing Local Imperativity in a Purely
Functional Language (Functional Pearl)

SEBASTIAN ULLRICH, Karlsruhe Institute of Technology, Germany

LEONARDO DE MOURA,Microsoft Research, USA

Purely functional programming languages pride themselves with reifying effects that are implicit in imperative

languages into reusable and composable abstractions such as monads. This reification allows for more exact

control over effects as well as the introduction of new or derived effects. However, despite libraries of more and

more powerful abstractions over effectful operations being developed, syntactically the common do notation

still lags behind equivalent imperative code it is supposed to mimic regarding verbosity and code duplication.

In this paper, we explore extending do notation with other imperative language features that can be added

to simplify monadic code: local mutation, early return, and iteration. We present formal translation rules

that compile these features back down to purely functional code, show that the generated code can still be

reasoned over using an implementation of the translation in the Lean 4 theorem prover, and formally prove

the correctness of the translation rules relative to a simple static and dynamic semantics in Lean.

CCS Concepts: • Software and its engineering→ Language features.

Additional Key Words and Phrases: functional programming, interactive theorem proving, Lean

ACM Reference Format:

Sebastian Ullrich and Leonardo de Moura. 2022. ‘do’ Unchained: Embracing Local Imperativity in a Purely

Functional Language (Functional Pearl). Proc. ACM Program. Lang. 6, ICFP, Article 109 (August 2022), 28 pages.

https://doi.org/10.1145/3547640

1 INTRODUCTION

The success story of Haskell’s perhaps most well-known abstraction, the monad as popularized
by Wadler [1990], is by now invariably linked with its ubiquitous syntax sugar, the do notation.
Together they can express imperative sequencing on a more general, well-behaved abstraction
level while retaining a terse, familiar, and suggestive syntax. They are in fact so commonly linked,
and taught, together that programmers tend to use them even when weaker, potentially more
performant abstractions would suffice [Marlow et al. 2016].

It is then surprising that no serious attempts to add more imperative control flow techniques over
just sequencing seem to have been made, unless one considers that most of these only carry their
weight in the presence of mutable variables. For example, there is not much reason to introduce an
if _ then _ syntax without an else branch to Haskell when there is already the when combinator
that can be used to the same effect. Mutable variables in turn are of course seen as an antithesis to
purely functional programming’s core tenet of referential transparency.
On the other hand, even imperative languages have started to rein in mutability and make it

the exception, not the rule. In Rust [Matsakis and Klock 2014], for example, let-bound variables

Authors’ addresses: Sebastian Ullrich, sebastian.ullrich@kit.edu, Karlsruhe Institute of Technology, Kaiserstraße 12, Karls-

ruhe, 76131, Germany; Leonardo de Moura, leonardo@microsoft.com, Microsoft Research, One Microsoft Way, Redmond,

WA, 98052, USA.

© 2022 Copyright held by the owner/author(s).

2475-1421/2022/8-ART109

https://doi.org/10.1145/3547640

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 109. Publication date: August 2022.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3547640
https://doi.org/10.1145/3547640

109:2 Sebastian Ullrich and Leonardo de Moura

are immutable unless explicitly marked mut, and mutable references are non-shareable to prevent
łspooky actions at a distancež. Ultimately, mutable variables in imperative languages (excluding
mutable references) are in fact commonly compiled down to static single assignment form [Rosen
et al. 1988], which is known to be equivalent to a subset of continuation passing style [Kelsey 1995],
meaning it is certainly possible to transform them to pure code.

Starting with mutable variables, we thus explore embracing imperative language features as part
of the do notation in this paper. We do so in the context of the Lean 4 programming language and
theorem prover [de Moura and Ullrich 2021], though the implementation can readily be adapted to
any other functional language with support for monads and monad transformers. We will consider
three extensions in total, which at this point we merely want to tease using suggestive side-by-side
examples of Rust and Lean code:

• mutable variables (Section 2),

let mut x = read_int();

if x != 0 {

x = f(x);

}

. . .

do let mut x ← readInt

if x != 0 then

x := f x

. . .

• early return (Section 3),

let line = read_line();

if line == "" {

return

}

. . .

do let line ← readLine

if line = "" then

return ()

. . .

• and for loops (Section 4).

let lines = read_lines();

let mut sum = 0;

for line in lines {

if line == "END" {

break

}

sum += parse_int(line);

}

. . .

do let lines ← readLines

let mut sum := 0

for line in lines do

if line = "END" then

break

sum := sum + parseInt line

. . .

In each section, we will motivate the extension using examples, discuss possible syntax and
semantics, focusing on those that are least surprising to both imperative and functional program-
mers, and give a formal translation into purely functional code. We validate the translation with
an incremental, one-to-one implementation in the paper’s supplemental material [Ullrich and
de Moura 2022b]1 using Lean’s flexible macro system. We discuss this reference implementation
as well as a more extensive implementation built into Lean itself (Section 5). We show that the
code produced by our translation can still be analysed and reasoned over using the same proof
construction tools we use for pure code (Section 6), and formally prove in Lean that the translation
preserves the input’s static and dynamic semantics specified as a simple type system and natural

1The latest version, which may be updated for future Lean versions, is available at https://github.com/Kha/do-supplement.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 109. Publication date: August 2022.

https://github.com/Kha/do-supplement

‘do’ Unchained: Embracing Local Imperativity in a Purely Functional Language (Functional Pearl) 109:3

semantics (Section 7). We conclude with an evaluation of the use of the extensions in our own code
as well as that of third parties (Section 8).

Key contributions.

• We extend the do DSL with support for mutable variables as well as the familiar imperative
statements return, for, break, and continue, usable in both monadic and pure computations.
• We give a formal translation of these extensions, backed by a reference implementation and a
formal equivalence proof in Lean, down to well-known combinators so that the core language
does not have to be changed.
• Throughout, we discuss issues of syntax, semantics, compilation, and proving.

2 LOCAL MUTATION

One incentive for introducing mutable variables to Lean was the proliferation of the following
łconditional updatež pattern in the Lean codebase:2

do . . .

x ← if b then

f x

else pure x

. . .

We cannot help but notice that the else branch feels redundant: nothing of interest is happening in
it. While the boilerplate in this abstract case is still minimal, the issue compounds in the presence
of multiple variables with names of more realistic length.

do . . .

(aVar, anotherVar) ← if someCondition then do

aVar ← transform1 aVar

anotherVar ← transform2 aVar anotherVar

pure (aVar, anotherVar)

else pure (aVar, anotherVar)

. . .

This code is still easy enough to scan and comprehend, but we would be hard-pressed to defend it
to e.g. a programmer coming from Rust, who might expect something more like

do let mut aVar . . .

. . .

if someCondition then

aVar ← transform1 aVar

anotherVar ← transform2 aVar anotherVar

. . .

No matter how much we extoll the virtues of purely functional code to the programmer, it is
unlikely we can persuade them, or ourselves, that the latter code is not easier to read, comprehend,
and ultimately maintain. At the same time, the boilerplate is mostly about bindings and not data so
that we cannot profitably abstract it into a new (higher-order) combinator. Thus we finally relent
and instead perform the before-unthinkable: we will try to assign the above code semantics that
are reasonable in the eyes of both functional and imperative programmers.
We start by copying the careful approach of Rust and other languages of introducing separate

binding syntax for mutable variables: let mut x := . . .3, and let mut x ← . . . for the monadic form.

2We note that monadic bindings in both Haskell and Lean are non-recursive, thus shadowing works as expected even if the

right-hand side contains a reference to the shadowed variable.
3In Lean, we usually use := where Haskell would use = since the latter is instead used for the equality type.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 109. Publication date: August 2022.

109:4 Sebastian Ullrich and Leonardo de Moura

This way, we can make sure that users will not accidentally make use of local mutation without even
knowing it exists. For a thus introduced variable x, x := . . . seems like the obvious choice of syntax
for reassigning the variable to the value of a pure term. Unfortunately, the corresponding syntax
with a monadic← is already taken. Since distinguishing between declaration and reassignment is
certainly a good idea, for Lean 4 we have decided on the drastic step of realigning the monadic
binding syntax to the pure one and changing the syntax for introducing an immutable binding to
let x ← . . . as seen in the examples in Section 1.4 Thus a variable definition in Lean 4 is uniformly
signified by the let keyword.
With syntactic questions out of the way, let us now turn to the expected semantics, starting

with the question of scope. Declaring a mutable variable should grant us access to its value in the
subsequent code just like with immutable ones, but reassignment will have to be more limited: if
there is another do block nested anywhere inside the first one, say within an argument to some
monadic combinator, there is no way in general to propagate reassignments back to the outer block
without true mutation. Neither changing the result type nor introducing a new monadic layer to
do the propagation is guaranteed to work (or even typecheck) in all contexts of the inner block.
Thus we will sensibly restrict reassignment of a variable to the same do block it was declared in
using let mut. This also resolves the question as to how mutable variables should behave when
the block is executed multiple times: in any single execution, the variable is first freshly declared
and then mutated, so the executions are independent. However, a similar but more subtle problem
exists for some monads, those that may execute the >>= right-hand side more than once, such as
the list/nondeterminism and the continuation monad:

do let mut x := 0

let y ← choose [0, 1, 2, 3]

x := x + 1

guard (x < 3)

pure (x + y)

In usual implementations of nondeterminism, this program will bind y to the values 0, . . . , 3 in turn,
execute the remainder of the block with each of them, and then collect all the results from the
different executions in a list. The guard function discards the łstrandsž of execution for which the
given condition is false. Should the reassignment of x then persist into further executions, creating
the output [1, 3], or should it be limited to the current execution only, yielding [1, 2, 3, 4]?
We argue that the more intuitive (and implementable) semantics is the latter one, where local
mutation is interpreted as a local state effect on top of the underlying monad. Thus re-running a
nondeterministic program or captured continuation is still łpurež: mutable variables will start out
with the same values as in the first run. With the alternative semantics, it would not even be the
case that our initial examples from the beginning of the section are indeed equivalent in all monads.
If we wanted to implement these łimpurež semantics, we would have to introduce the state effect
below the nondeterminism effect (or rely on existing arbitrary state from the base monad such as
with IO or ST), which is not an option in general as not all monad transformers commute.

We start the discussion of the formal translation of these semantics with a basic syntax and
desugaring of do similar to that in the Haskell 98 report [Jones 2003] (Figure 1). Here do is followed
by one of two kinds of statements, which are defined inductively: either a plain expression, or a
monadic binding followed by another statement. The value of an expression as a statement is that
of the expression (D1), while a monadic binding desugars to an application of the monadic bind
operator >>= (D2). We do not directly rewrite occurrences of do into other do terms but do so using a
recursive helper function 𝐷 , which will become useful in Section 3. For the sake of presentation, we

4In fact, the łnewž syntax is reminiscent of the original monadic binding notation (let 𝑥 ⇐ 𝑒 in 𝑒′) of Moggi [1991].

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 109. Publication date: August 2022.

‘do’ Unchained: Embracing Local Imperativity in a Purely Functional Language (Functional Pearl) 109:5

Syntax

𝑥,𝑦 ∈ Var

𝑒 ∈ Expr ::= do s

| 𝑥 | fun x => e | let x := e in e′ | e e′ | e >>= e′ | . . .

𝑠 ∈ Stmt ::= e

| let x ← s; s′

Translation

do s ⇝ 𝐷 (𝑠) (1)

𝐷 : Stmt → Expr

𝐷 (e) = 𝑒 (D1)

𝐷 (let x ← s; s′) = 𝐷 (𝑠) >>= fun x => 𝐷 (𝑠 ′) (D2)

Abbreviations

let x := e; s ≡ let x ← pure e; s (A1)

s; s' ≡ let x ← s; s' (A2)

Fig. 1. A basic do translation

Operations

pure : 𝛼 → m 𝛼

(>>=) :𝑚 𝛼 → (𝛼 →𝑚 𝛽) →𝑚 𝛽

Laws

(x >>= f) >>= g = x >>= (fun a => f a >>= g)

pure a >>= f = f a

f >>= pure = f

Fig. 2. Basic monadic operations and their laws. pure is usually defined in the more general Applicative
typeclass, which comes with even more operations and laws, but we will focus on monads for this paper.

also introduce a syntax for pure let bindings as an abbreviation for monadic bindings of applications
of the pure function (A1). In the translation rules, we will assume that all abbreviations have already
been unfolded. A more direct translation of pure let bindings is certainly possible5, but equivalent in
Lean under the standard monad laws (Figure 2), so we use this shortcut to minimize the number of
translation cases that we need to consider. Similarly, we will restrict ourselves to variable bindings
instead of more complex pattern bindings, but the translation naturally extends to the latter, as is
done in the full implementation in Lean 4 (Section 5.3). Finally, we introduce statement sequencing
s; s' not as a primitive but as yet another abbreviation, in this case for a binding to a fresh variable
name x (contrasted by its monospace font from metavariables in italics) (A2). For simplicity, we
will assume in the following that the underlying rewriting system is hygienic as is the case for our

5and necessary in languages like Haskell where pure and monadic bindings have different shadowing/recursive semantics

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 109. Publication date: August 2022.

109:6 Sebastian Ullrich and Leonardo de Moura

Syntax

𝑠 ∈ Stmt ::= . . .

| let mut x := e; s

| x := e

| if e then s1 else s2

Abbreviations

let mut x ← s; s’ ≡ let y ← s; let mut x := y; s’ (A3)

x ← s ≡ let y ← s; x := y (A4)

if e then s1 ≡ if e then s1 else pure () (A5)

unless e do s2 ≡ if e then pure () else s2 (A6)

Fig. 3. Syntax of a do with local mutation

reference implementation (Section 5.1), meaning that such an identifier introduced by a rewriting
rule is renamed automatically to avoid any conflict with user-specified names.
We note that the grammar as presented has been optimized for translation, not parsing, and is

thus ambiguous regarding the associativity of semicolons. We will tacitly assume that they always
associate to the right and will use parentheses where necessary, i.e. let x ← s1; s2; s3 represents
the same statement as let x ← s1; (s2; s3), not let x ← (s1; s2); s3 or (let x ← s1; s2); s3. In
the reference implementation, we resolve the issue using parsing precedences and a curly braces
notation for grouping statements (Section 5.1). The full implementation in Lean also supports a
Haskell-inspired indentation-sensitive syntax as seen in Section 1, which we will use in examples.
The syntax from Figure 1 already diverges from that known from Haskell or previous versions

of Lean in two distinct ways: firstly, we denote both kinds of bindings with a leading let keyword
as discussed above. Secondly, our monadic binding binds not just a term but another statement.
With the grammar at hand, this isn’t very useful yet because nested bindings can always be floated
out by the monad associativity law (Figure 2).

Nested bindings become a more interesting option when we add control flow statements, which
we do together with adding syntax for local mutation in Figure 3: let mut x := e; s introduces
a mutable variable 𝑥 that can later (inside 𝑠) be reassigned using x := e. We introduce monadic
equivalents let mut x ← s; s' and x ← s by desugaring them to the sequence of a temporary,
non-mutable monadic binding and the respective pure statement (A3, A4), thus simplifying our
translation by keeping let x ← s; s' as the only primitive monadic binding.
In straight-line code, local mutation is not very interesting: in let mut x ← s; . . . ; x ← s';

. . . , we could achieve the expected semantics by replacing both bindings with let x ← . . . and
relying on shadowing for łmutationž.

Thus we also introduce the conditional statement if e then s1 else s2 as well as derived syntax
abbreviations (A5, A6) so local mutation becomes meaningful:

do let mut a ← f

if b a then

a ← g a

pure a

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 109. Publication date: August 2022.

‘do’ Unchained: Embracing Local Imperativity in a Purely Functional Language (Functional Pearl) 109:7

By the informal semantics discussed above, we expect the translation of the above code block to
be equivalent to the term f >>= fun a => if b a then g a else pure a. Let us start by unfolding
all abbreviations we have introduced.

do let y ← f

let mut a := y

let x ←
if b a then

let y' ← g a

a := y'

else

pure ()

pure a

We can easily eliminate the mutable variable by passing the updated state outwards, much like we
did manually in our very first example in this section:

do let y ← f

let a := y

let (x, a) ←
if b a then

let y' ← g a

let a := y'

pure ((), a)

else

pure ((), a)

pure a

By the monad laws, this is in fact equivalent to the expected term. Like GHC [Peyton Jones 1996],
the Lean compiler can optimize the code above by inlining pure and >>= (if known) and performing
transformations on match-of-match (known as case-of-case in GHC) and match-of-constructor.
For example, assuming the monad in the example above is Reader, Lean generates code which is
equivalent to

fun r =>

let a := f r

match b a with

| false => a

| true => g a r

Experienced purely functional programmers might notice a familiar pattern in the state-returning
code: putting the łreturn valuež and state into a pair and then extracting them at >>= mirrors the
implementation of the StateT monad transformer (Figure 4). Indeed, we can rewrite the code using
it:

do let y ← f

let a := y

StateT.run' (do

let x ←
if b a then

let y' ← StateT.lift (g a)

set y'

else

StateT.lift (pure ())

let a ← get

pure a) a

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 109. Publication date: August 2022.

109:8 Sebastian Ullrich and Leonardo de Moura

Operations

StateT.run' : StateT 𝜎 m 𝛼 → 𝜎 → m 𝛼

StateT.lift : m 𝛼 → StateT 𝜎 m 𝛼

get : StateT 𝜎 m 𝜎

set : 𝜎 → StateT 𝜎 m Unit

Properties

StateT.run' (pure a) s = pure a

StateT.run' (StateT.lift x >>= f) s = x >>= fun a => StateT.run' (f a) s

StateT.run' (get >>= f) s = StateT.run' (f s) s

StateT.run' (set s' >>= f) s = StateT.run' (f ()) s'

Fig. 4. StateT monad transformer operations and relevant properties for reasoning about them

Translation

𝐷 (let mut x := e; s) = let x := e; StateT.run' 𝐷 (𝑆𝑥 (𝑠)) x (D3)

𝐷 (if e then s1 else s2) = if e then 𝐷 (𝑠1) else 𝐷 (𝑠2) (D4)

𝑆 : Var → Stmt → Stmt

𝑆𝑦 (𝑒) = StateT.lift e (S1)

𝑆𝑦 (let x ← s; s′) = let x ← 𝑆𝑦 (𝑠); let 𝑦 ← get; 𝑆𝑦 (𝑠
′) if 𝑥 ≠ 𝑦 (S2)

𝑆𝑦 (let mut x := e; s) = let mut x := e; 𝑆𝑦 (𝑠) if 𝑥 ≠ 𝑦 (S3)

𝑆𝑦 (x := e) = x := e if 𝑥 ≠ 𝑦 (S4)

𝑆𝑦 (𝑦 := e) = set e (S5)

𝑆𝑦 (if e then s1 else s2) = if e then 𝑆𝑦 (𝑠1) else 𝑆𝑦 (𝑠2) (S6)

Fig. 5. Translation of a do with local mutation

Here we introduce a state effect for the mutable variable a using StateT.run', then get and set the
current value inside. We remark that set corresponds to Haskell’s put method for setting the state
within the monad. We lift all existing monadic actions to the base monad using StateT.lift (which
is a no-op for the specific case of pure).
For this simple example, the rewritten code is not exactly simpler than the previous version.

However, the main motivation for abstracting translation of mutable variables into a separate
effect is that it does not only simplify the presentation of that translation, but it will also ensure
modularity of our extension with others defined similarly: by separating every extension into its
own effect, we can layer them naturally without having to manually reconcile their interaction. In
other words, while we might need to add new translation rules for local mutation when introducing
new do syntax in later sections, we will not have to modify existing rules for them. We will not
have to worry about how to preserve the state on break, nor about how return inside loops has to
be handled.

Figure 5 gives a formal translation of mutable variables to state effects: when encountering the
definition of a mutable variable 𝑦, we use the helper function 𝑆𝑦 to lift the following statements, i.e.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 109. Publication date: August 2022.

‘do’ Unchained: Embracing Local Imperativity in a Purely Functional Language (Functional Pearl) 109:9

𝑦’s scope, into the state transformer and rewrite them appropriately (D3). For monadic actions 𝑒 ,
we do this with StateT.lift (S1). We use the shadowing approach for binding the current value of
𝑦, starting with its initial value in (D3), so we need to rebind it after reassignments as well as at
possible control flow join points. In our reduced grammar, this can only be the case between the two
statements in let x ← s; s′, so we add a binding let 𝑦 ← get in between them (S2). This step
could of course be elided if there is no reassignment of 𝑦 in 𝑠 . Furthermore, it only makes sense if 𝑥
and 𝑦 are distinct variables, which we enforce. We also do so for let mut x, meaning shadowing of
mutable variables is disallowed in general. Apart from the implementation, another reason for this
restriction is to avoid any confusion on the user’s side between mutable and immutable bindings.
Finally, on a reassignment 𝑦 := e of the variable in question, we set the new value (S5).
𝑆𝑦 (𝑠) will thus eliminate any reassignments of 𝑦 in 𝑠 . If any remaining reassignments are

encountered in the main translation function 𝐷 , that must mean that no such mutable variable is
in scope, and an appropriate error should be generated.

3 EARLY RETURN

Now that we have support for basic imperative control flow in do, it makes sense to talk about
supporting return as well. While not without its own controversies, the programming pattern of
early return seems to generally be well regarded in imperative programming for quickly discharging
trivial/pathological cases in the beginning of a function without introducing indentation creep
from nested conditionals. This matches our experience with it in Lean such as in the following
example.

def isDefEqSingleton (structName : Name) (s : Expr) (v : Expr) : MetaM Bool := do

let ctorVal ← getStructureCtor structName

if ctorVal.numFields != 1 then

return false -- not a structure with a single field

let s ← whnf s

if !s.isMVar then

return false -- not an unsolved metavariable

. . .

This code taken from the Lean unifier and slightly simplified for presentation tries to reduce a

unification problem p s
?
= v where p is the projection of a single-field structure type to s

?
= c v

where c is the constructor of that type, using early return to quickly abort when the problem is not
of the expected shape. As we shall see in the next section, return becomes even more useful when
combined with iteration.
As with mutation, the reasonable semantics we can implement without changing code outside

the do block is local: we will implement return e to abort execution of the current do block and have
it return the value of 𝑒 . We will discuss this decision more in Section 8.
Before we get to the implementation, a quick syntax consideration: in Lean 4, even before

introducing the extended do block, we had already removed our analog of Haskell’s return function
in favor of the more general pure. Thus the decision to requisition the word as a keyword known
from many imperative languages instead was a relatively easy one.
Programmatically, we could implement support for return by restructuring the entire do block

into the noted nested conditionals. Even more so than in the previous section, however, it turns out
that we can implement the desired semantics with relatively few additional rules by introducing
a new effect (Figure 7), this time using the exception monad transformer ExceptT (Figure 6): we
implement return 𝑒 by raising 𝑒 as an exception (R1), lifting all other monadic actions into the
monad using ExceptT.lift (R2), and finally catching the exception, if any, and returning its captured

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 109. Publication date: August 2022.

109:10 Sebastian Ullrich and Leonardo de Moura

Operations

runCatch : ExcepT 𝛼 m 𝛼 → m 𝛼

ExcepT.lift : m 𝛼 → ExcepT 𝜀 m 𝛼

throw : 𝜀 → ExcepT 𝜀 m 𝛼

Properties

runCatch (pure a) = pure a

runCatch (ExceptT.lift x >>= f) s = x >>= fun a => runCatch (f a)

runCatch (throw a >>= f) = pure a

Fig. 6. ExceptT monad transformer operations and relevant properties for reasoning about them

Syntax

𝑠 ∈ Stmt ::= ...

| return e

Translation

do s ⇝ runCatch 𝐷 (𝑅(𝑠)) (1’)

𝑅 : Stmt → Stmt

𝑅(return e) = throw e (R1)

𝑅(𝑒) = ExceptT.lift e (R2)

𝑅(let x ← s; s′) = let x ← 𝑅(𝑠); 𝑅(𝑠 ′) (R3)

𝑅(let mut x := e; s) = let mut x := e; 𝑅(𝑠) (R4)

𝑅(x := e) = x := e (R5)

𝑅(if e then s1 else s2) = if e then 𝑅(𝑠1) else 𝑅(𝑠2) (R6)

Fig. 7. A do with early return via exceptions

value at the top level of the do block (1’) using runCatch (Figure 6). This way, we get the short-
circuiting semantics for free from ExceptT’s implementation of >>= introduced by our unchanged
translation of let x ← s; s'. The only existing rule we had to change was not that of an extension
but the basic top-level translation rule (1). If a do block does not contain any return statements, we
can of course fall back to the original rule instead. Note also that we did not have to extend 𝑆𝑦 at
all in this case because the only new syntax, return e, is eliminated before 𝐷 , and therefore 𝑆𝑦 , is
ever run.

4 ITERATION

One of the first things a functional programmer usually learns is that loops from imperative
languages can be replaced by recursion. However, the mere fact of equivalence does not imply
that the translation is always as readable or maintainable as the original. One issue with recursive
helper definitions is that of textual locality: we have to define the recursion either before or after
its (usually singular) use site even if it by itself is not a self-contained abstraction, moving it out of
its surrounding context and hurting code comprehension compared to in-place usage of loops.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 109. Publication date: August 2022.

‘do’ Unchained: Embracing Local Imperativity in a Purely Functional Language (Functional Pearl) 109:11

Focusing first on iteration over the elements of a collection, perhaps the most common kind of
loop, we note that the locality issue can be avoided by use of folds, which allow in-place iteration
using anonymous functions. We illustrate this kind of iteration using lists

List.foldlM (f : 𝛿 → α → m 𝛿) (init : 𝛿) (xs : List α) : m 𝛿

where List α is a list of elements of type 𝛼 and 𝛿 is the accumulator type. In our experience in
working on the Lean codebase, where fold-like traversal is pervasive, folds work relatively well for
cases of simple control flow and one or two datums kept in the accumulator.

do . . .

let (x, y) ← zs.foldlM (init := (x, y)) $ fun (x, y) z => do

let x' ← f x z

if p x' then

pure (x', g y z)

else

pure (x', y)

. . .

Lean’s support for named parameters, the $ infix operator for function application, and extended
dot notation avoids some confusion about parameter order as well as having to parenthesize the
łloop bodyž. The term zs.foldlM (init := a) f is notation for List.foldlM f a zs. However, as
soon as the number of łmutablesž increases and/or the control flow inside the loop body gets more
complex, handling and updating of the state tuple can quickly get onerous. In a few cases, we even
resorted to manually introducing a temporary StateT layer exclusively for a single loop, in which
case we can use the simpler combinator

List.forM : List α → (α → m Unit) → m Unit

instead:

do . . .

let (x, y) ← StateT.run' (x, y) $ do

zs.forM fun z => do

let (x, y) ← get

let x' ← StateT.lift (f x z)

if p x' then

set (x', g y z)

else

set (x', y)

get

. . .

With local mutation in hand, we would like to remove the need for such boilerplate code by
adding a primitive syntax for iteration to do blocks with full support for mutable variables.

do let mut x := . . .

let mut y := . . .

. . .

for z in zs do

x ← f x z

if p x then

y := g y z

. . .

We remark the second do keyword in the example above is not the beginning of a nested do block,
but part of the for statement syntax. Naturally, we would like to extend support for return to for

as well, providing us with a succinct way to reimplement some well-known combinators.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 109. Publication date: August 2022.

109:12 Sebastian Ullrich and Leonardo de Moura

def List.findM? (p : α → m Bool) (xs : List α) : m (Option α) := do

for x in xs do

let b ← p x

if b then

return some x

return none

Depending on the context and whether partial application can be used, it might even bemore natural
to inline these small definitions (adjusting the use of return if necessary) instead of remembering
the combinator’s name and calling it. In the supplement, we prove by induction and simplification
that these implementations are equivalent to the recursive definitions. Finally, in line with return

we would also like to support break and continue with the expected semantics.
We give the formal syntax and translation supporting all these features in Figure 8. The main

translation rule (D5) introduces two exception effects using runCatch: one for break outside, and
one for continue inside a call to a collection-polymorphic forM, meaning both the loop body and the
overall loop return Unit in their respective monad. The loop body 𝑠 is then rewritten appropriately,
starting with the outer effect (so that its actions will be lifted by the subsequent rewrite for the inner
effect) using the helper function 𝐵. 𝐵 rewrites any break statement to throw () (B1) and lifts all
other monadic actions (B3), much like 𝑅. However, it should not rewrite break in nested loops (B8),
so at that point we switch to another helper function 𝐿 that merely lifts the loop into the correct
monad. The helper function 𝐶 for the inner effect is defined analogously to 𝐵.
Finally, we adapt the existing extensions to the newly introduced syntax: for 𝑅, this is merely

recursive traversal (R7-R9), but for 𝑆𝑦 , we need to introduce a get call at the loop entrance since it
is a control flow join point (S9).

Before continuing, let us ensure that the order of effects indeed make sense: in the most general
case, a for loop can contain all of return, reassignments to outer mutable variables, break, continue,
and inner mutable variables, which correspond to effects introduced on top of the base monad in
this order. While state effects and exception effects commute with instances of the same kind, this
is not true when combining the two different kinds: an exception monad transformer on top of
a state transformer will preserve the current state on an exception, whereas it will be lost when
stacked in reverse. Thus the state of inner mutable variables, but not outer ones, will be lost on
continue or break, while all state will be lost on return, which matches our intuitive understanding
of these imperative concepts.

Figure 9 contains the translation of a small do block as an example. We can see that the top-most
exception effect is used in place of continue, the one below for break, and that all other actions are
lifted to the base monad below both of them.

We note that while 𝐵 and 𝐶 could readily be fused into a single pass, separating them enables us
to conditionally execute only one of the two passes (or neither of them) depending on the presence
of the respective command in the loop. If a pass is not needed, the respective runCatch call should
be removed as well. Finally, the get call can also be elided if there is no reassignment of the mutable
variable in question inside the loop body.

In our encoding, the collection-polymorphic forM is parametrized by the type class ForM 𝛾 α,
where 𝛾 is some container type of elements of type 𝛼 .

forM [Monad m] [ForM 𝛾 α] : 𝛾 → (α → m Unit) → m Unit

We remark that, in Lean, square brackets indicate that the arguments of type Monad m and ForM 𝛾 α

are instance-implicit, i.e. that they should be synthesized using typeclass resolution [Wadler and
Blott 1989]. A function with a similar signature exists in the Foldable 𝑡 typeclass of the Haskell base

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 109. Publication date: August 2022.

‘do’ Unchained: Embracing Local Imperativity in a Purely Functional Language (Functional Pearl) 109:13

Syntax

𝑠 ∈ Stmt ::= . . .

| break

| continue

| for x in e do s

Translation

𝐷 (for x in e do s) = runCatch (forM e (fun x => runCatch 𝐷 (𝐶 (𝐵(𝑠))))) (D5)

𝐵 : Stmt → Stmt

𝐵(break) = throw () (B1)

𝐵(continue) = continue (B2)

𝐵(𝑒) = ExceptT.lift e (B3)

𝐵(let x ← s; s′) = let x ← 𝐵(𝑠); 𝐵(𝑠 ′) (B4)

𝐵(let mut x := e; s) = let mut x := e; 𝐵(𝑠) (B5)

𝐵(x := e) = x := e (B6)

𝐵(if e then s1 else s2) = if e then 𝐵(𝑠1) else 𝐵(𝑠2) (B7)

𝐵(for x in e do s) = for x in e do 𝐿(𝑠) (B8)

𝐿 : Stmt → Stmt

𝐿(break) = break (L1)

𝐿(continue) = continue (L2)

𝐿(𝑒) = ExceptT.lift e (L3)

𝐿(let x ← s; s′) = let x ← 𝐿(𝑠); 𝐿(𝑠 ′) (L4)

𝐿(let mut x := e; s) = let mut x := e; 𝐿(𝑠) (L5)

𝐿(x := e) = x := e (L6)

𝐿(if e then s1 else s2) = if e then 𝐿(𝑠1) else 𝐿(𝑠2) (L7)

𝐿(for x in e do s) = for x in e do 𝐿(𝑠) (L8)

𝑆𝑦 (break) = break (S7)

𝑆𝑦 (continue) = continue (S8)

𝑆𝑦 (for x in e do s) = for x in e do (let 𝑦 ← get; 𝑆𝑦 (𝑠)) (S9)

𝑅(break) = break (R7)

𝑅(continue) = continue (R8)

𝑅(for x in e do s) = for x in e do 𝑅(𝑠) (R9)

Fig. 8. A do with support for iteration

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 109. Publication date: August 2022.

109:14 Sebastian Ullrich and Leonardo de Moura

do let mut s := 0

for x in xs do

if x % 2 = 0 then

continue

if x > 5 then

break

s := s + x

IO.println s

runCatch

(let s := 0 in

StateT.run' (do

runCatch (forM xs (fun x => runCatch (do

let s ← ExceptT.lift (ExceptT.lift get)

if x % 2 = 0 then throw ()

else ExceptT.lift (ExceptT.lift (StateT.lift (ExceptT.lift (pure ()))))

let s ← ExceptT.lift (ExceptT.lift get)

if x > 5 then ExceptT.lift (throw ())

else ExceptT.lift (ExceptT.lift (StateT.lift (ExceptT.lift (pure ()))))

let s ← ExceptT.lift (ExceptT.lift get)

ExceptT.lift (ExceptT.lift (set (s + x))))))

let s ← get

StateT.lift (ExceptT.lift (IO.println s)))

s)

Fig. 9. Translation example, using basic do notation instead of >>= for readability

library, where 𝛾 = 𝑡 𝛼 . Alternatively, the MonoFoldable typeclass of the mono-traversible package6

provides a function that is closer to the above signature and as such also allows for iterating over
monomorphic collection types as well as ones with more than one type parameter, such as the
key-value pairs of a map, without going through a temporary list.
Compared to other looping constructs, using fold-like traversal as a primitive is particularly

interesting for total languages such as Lean because it delegates the issue of termination to the
combinator. Indeed, if we opt into Lean’s support for non-total functions, we can introduce the
repeat and while statements as two syntax abbreviations

repeat s ≡ for u in Loop.mk do s

while c do s ≡ repeat ((unless c do break); s)

where Loop is an auxiliary type containing a single constructor Loop.mk : Loop, and its ForM Loop

Unit instance is defined using the function

partial def loopForever [Monad m] (f : Unit → m Unit) : m Unit :=

f () >>= fun _ => loopForever f

The partial keyword ensures soundness by checking that the function type is inhabited (in this
case by fun f => pure ()) and then turning the function into an opaque constant, making its body
inaccessible to proofs.

6https://hackage.haskell.org/package/mono-traversable-1.0.15.1/docs/Data-MonoTraversable.html

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 109. Publication date: August 2022.

https://hackage.haskell.org/package/mono-traversable-1.0.15.1/docs/Data-MonoTraversable.html

‘do’ Unchained: Embracing Local Imperativity in a Purely Functional Language (Functional Pearl) 109:15

5 IMPLEMENTATION

5.1 Reference Implementation

We have implemented our extended do notation in Lean 4. The supplemental material contains a
reference implementation, examples, and equivalence proofs. Our reference implementation relies
on Lean’s hygienic macro system [Ullrich and de Moura 2022a], and is a direct encoding of the
translation rules presented in the previous sections. Languages with similarly expressive macro
systems should allow for easy adaptation of the implementation.
We start by defining the syntactic category of statements:

declare_syntax_cat stmt

Syntactic categories start out empty and can be extended with new syntax variants at any point.
In the supplemental material, we use the keyword do' instead of do to distinguish the reference

implementation from Lean’s full implementation. We define the do' parser using the following
command:

syntax "do'" stmt : term

This parser specifies that the keyword do' followed by stmt is a term, where term is a builtin
syntactic category. We encode all abbreviations as simple macros. For example, we implement
abbreviation A2 using the macro command

macro:0 s1:stmt ";" s2:stmt : stmt => `(let x ← $s1; $s2)

The left-hand side defines a new parser for the category stmt with explicit precedence 0, and
the right-hand side uses an explicit syntax quasiquotation to construct the syntax tree, with
syntax placeholders (antiquotations) prefixed with $. Because the second stmt is not restricted to a
precedence level, Lean will greedily associate the notation to the right as expected. By restricting
nested statements in trailing positions to precedence levels greater than 0, we can force them not to
contain a semicolon unless wrapped in curly braces, which use the implicit maximum precedence.

syntax "if" term "then" stmt "else" stmt:1 : stmt

macro "{" s:stmt "}" : stmt => `($s)

We represent the function 𝐷 using the following auxiliary notation

syntax "d!" stmt : term -- `d! s` corresponds to `D(s)`

and encode rule D2 as follows:

macro_rules | `(d! let $x ← $s; $s') => `((d! $s) >>= fun $x => (d! $s'))

Because macro_rules declarations may extend existing macros with new cases at any point, we can
in fact introduce our language extensions modularly just like in the formal translation, with each
file in the supplement corresponding to one of the extensions.
Similarly to the above rule, we encode function 𝑆𝑦 using the auxiliary notations

declare_syntax_cat expander

syntax "expand!" expander "in" stmt : stmt

syntax "mut" ident : expander

and encode rule S1 using the following command

macro_rules | `(stmt| expand! mut $y in $e:term) => `(stmt| StateT.lift $e)

where the stmt| prefix adjusts the syntactic category parsed by the quasiquotations. We use the
abstract expander syntax category above to factor out common traversing rules at functions 𝑆𝑦 , 𝑅,
𝐵, and 𝐿. We have the following syntax declarations for the latter three functions:

syntax "return" : expander syntax "break" : expander syntax "lift" : expander

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 109. Publication date: August 2022.

109:16 Sebastian Ullrich and Leonardo de Moura

Then, we encode rules S6, R6, B7, and L7 described earlier using a single rule

macro_rules

| `(stmt| expand! $exp in if $e then $s1 else $s2) =>

`(stmt| if $e then expand! $exp in $s1 else expand! $exp in $s2)

We also avoid adding unnecessary monadic layers with a simple check: if the number of nested
occurrences of the keyword in question (return, break, or continue) has not changed after applying
the respective helper function, we throw away the transformation result and do not emit the
respective runCatch code. The full implementation uses a do-specific abstract syntax tree that makes
such analyses more efficient.
Our reference implementation produces error messages when side conditions do not hold. For

example, we implement rule (S2) as follows

macro_rules

| `(stmt| expand! mut $y in let $x ← $s; $s') =>

if x == y then

throw $ Macro.Exception.error x s!"cannot shadow 'mut' variable '{x.getId}'"

else

`(stmt| let $x ← expand! mut $y in $s; let $y ← get; expand! mut $y in $s')

5.2 Code Generation

As we can observe in Figure 9, the output produced by our translation can be quite verbose. In our
first implementation, we used the standard StateT and ExceptT monad transformers. With these
transformers, the Lean compiler can eliminate most of the overhead introduced by the translation
by inlining the monadic operators and applying program transformations such as match-of-match
and match-of-constructor [Peyton Jones 1996]. The only exception is the for statement. Even after
specializing a forM instance, the specialized function would still allocate transient pairs for storing
the updated mutable variables, and Except objects. When a particular forM instance is tail recursive,
we believe GHC can eliminate this overhead completely by inlining the specialized function as a
recursive join point and then performing fusion [Maurer et al. 2017]. Our current compiler does
not support recursive join points, and even if it did, it would not be sufficient for non-tail recursive
forM instances (e.g., for trees). We addressed this issue by using CPS versions of StateT and ExceptT

monad transformers.

def StateCpsT (𝜎 : Type u) (m : Type u → Type v) (α : Type u) :=

(𝛿 : Type u) → 𝜎 → (α → 𝜎 → m 𝛿) → m 𝛿

instance : Monad (StateCpsT 𝜎 m) where

pure a := fun 𝛿 s k => k a s

bind x f := fun 𝛿 s k => x 𝛿 s (fun a s => f a 𝛿 s k)

def ExceptCpsT (𝜀 : Type u) (m : Type u → Type v) (α : Type u) :=

(𝛽 : Type u) → (α → m 𝛽) → (𝜀 → m 𝛽) → m 𝛽

instance : Monad (ExceptCpsT 𝜀 m) where

pure a := fun 𝛽 k1 k2 => k1 a

bind x f := fun 𝛽 k1 k2 => x 𝛽 (fun a => f a 𝛽 k1 k2) k2

and we define runCatch for ExceptCpsT as follows

def runCatch [Monad m] (x : ExceptCpsT α m α) : m α :=

x α pure pure

Then, after simplification and code specialization, the Lean compiler produces the following
recursive function for the example in Figure 9.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 109. Publication date: August 2022.

‘do’ Unchained: Embracing Local Imperativity in a Purely Functional Language (Functional Pearl) 109:17

def rec xs s :=

match xs with

| [] => IO.println s

| x::xs =>

match x % 2 = 0 with

| false =>

match x > 5 with

| false => rec xs (x + s)

| true => IO.println s

| true => rec xs s

5.3 Full Implementation

We have "optimized" our reference implementation for conciseness and simplicity, and it diverges
from the full implementation built into Lean7 in some details. First, it has no support for patterns.
For example, we cannot write do' let (a, b) ← s; The full implementation also supports
match statements where the right-hand side of each alternative is a sequence of statements. For
example, we can write

do let mut n := 0

for x in xs do

match x with

| none => n := n + 1

| _ => pure ()

IO.println n

There is no fundamental challenge here, and the implementation of match statements is analo-
gous to the one for if statements. Indeed, the full implementation also supports the Rust-inspired
abbreviation if let none := x then n := n + 1 of the above match block mixing the two styles.

We also short-circuit translation steps to speed up compilation time of the produced terms. For
example, in the reference implementation, let mut x ← s; . . . is first expanded into let y ←

s; let mut x := y; Although the compiler can simplify the code, we observed that this does
increase compilation time. In the full implementation, let mut x ← s is not an abbreviation.
The sharp-eyed reader may have noticed that we can reassign variables in the reference im-

plementation with values of a different type. For example, do' let mut x := 0; x := true; . . . is
accepted, but, in the full implementation, we generate the following error message

error: invalid reassignment, value has type

Bool

but is expected to have type

Nat

We implement this check using the Lean built-in term ensureTypeOf! s msg e. This term instructs
the elaborator to produce the error message msg when the type of s and e do not match.
Our full implementation also supports two useful features that are not directly inspired by im-

perative languages features, but nevertheless can help in avoiding boilerplate in monadic programs
absent from equivalent imperative ones, so we mention them here for the sake of completeness:
nested actions and automatic monadic lifting. The first feature allows users to embed terms of
the form← a in expressions, and is similar to the !a notation available in the Idris programming
language [Brady 2013]. For example,

do if (← get).x >= 0 then

action

7https://github.com/leanprover/lean4/blob/v4.0.0-m4/src/Lean/Elab/Do.lean

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 109. Publication date: August 2022.

https://github.com/leanprover/lean4/blob/v4.0.0-m4/src/Lean/Elab/Do.lean

109:18 Sebastian Ullrich and Leonardo de Moura

expands to

do let s ← get

if s.x >= 0 then

action

The main difference to Idris’ implementation is that we wanted to make the scope of nested actions
more predictable: instead of being lifted łas high as possiblež [Brady 2014], they are always lifted
to the enclosing do block. Using the notation outside of a do block is an error.

The second feature, automatic monadic lifting, extends the implicit coercion insertion procedure
used in Lean. Most theorem provers support implicit coercions which map elements of one type to
another. For example, a coercion from Nat to Int allows a natural number value to be used where an
integer is expected. The implicit coercions are automatically inserted by the elaborator to address
type mismatches. In Lean, we have the typeclass

class MonadLift (m : Type → Type) (n : Type → Type) where

monadLift : m α → n α

which is based on the homonymous typeclass available in the Control.Monad.Layer Haskell pack-
age. The monadLift operation can be viewed as a coercion. For example, assume we have the
method inferType : Expr → MetaM Expr to retrieve the type of a given expression, we are writing
a function in the monad ElabM, and we have an instance MonadLift MetaM ElabM. Then, we used to
write monadLift (inferType e), but we found it to be quite tedious to add these lifting operations
manually. Automatic monadic lifting automatically inserts the monadLift operations when needed.

6 REASONING

One of the stated advantages of purely functional programming is ease of reasoning. Fortunately,
Lean is also a theorem prover (based on the Calculus of Inductive Constructions [Coquand and Huet
1988; Coquand and Paulin 1990]) and thus can be used to show that the output of our translation,
while (sometimes unnecessarily) verbose, can still be analyzed using the same tools as corresponding
code not using the extensions and indeed shown to be equivalent to it. We have included such
equivalence proofs in the supplement material. Our proofs hold for any monad m that has an
instance LawfulMonad m. The typeclass LawfulMonad encapsulates the monadic laws of Figure 2.
These equivalence proofs are straightforward using Lean’s tactic framework for constructing
proofs. Tactics are user-defined or built-in Lean functions that construct terms representing proofs.
The main tactics used in our examples are cases (for case-analysis), induction, and simp. The latter
is a term simplifier that uses previously proved theorems marked with the attribute @[simp] as
simplification rules. The monadic (Figure 2), StateT (Figure 4), and ExceptT (Figure 6) laws are
marked with the attribute @[simp]. The Lean standard library also contains additional simplification
lemmas that follow from these laws. For example, it contains

@[simp] theorem bind_pure_unit [Monad m] [LawfulMonad m] (x : m Unit)

: (x >>= fun _ => pure ()) = x := . . .

The simplifier simp is crucial for automating all proofs in the supplemental material because of the
mentioned verbosity of the output produced by our translation rules. In the following example, we
show that a monadic program constructed using our do' notation is equal to

ma >>= fun x => if b then ma' else pure x

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 109. Publication date: August 2022.

‘do’ Unchained: Embracing Local Imperativity in a Purely Functional Language (Functional Pearl) 109:19

theorem simple [Monad m] [LawfulMonad m] (b : Bool) (ma ma' : m α) :

(do' let mut x ← ma;

if b then { x ← ma' };

pure x)

= (ma >>= fun x => if b then ma' else pure x) :=

by cases b <;> simp

The tactic cases b splits the proof into two cases (b = true) and (b = false), and both of them
are then solved using simp. We use induction to prove properties of programs containing the for

iterator. In the following theorem, we prove that a program with two nested for statements is equal
to List.findSomeM? (fun xs => List.findM? p xs) xss, where List.findSomeM? and List.findM?

are defined as recursive functions.

theorem eq_findSomeM_findM [Monad m] [LawfulMonad m] (xss : List (List α)) :

(do' for xs in xss do' {

for x in xs do' {

let b ← p x;

if b then { return some x }

} };

pure none)

= List.findSomeM? (fun xs => List.findM? p xs) xss := by

induction xss with

| nil => simp [List.findSomeM?]

| cons xs xss' ih =>

simp [List.findSomeM?]

rw [← ih, ← eq_findM]

induction xs with

| nil => simp

| cons x xs' ih => simp; apply byCases_Bool_bind <;> simp [ih]

The induction tactic induction xss with . . . splits the proof into two cases (xss = []) and (xss =

xs::xss'), and the variable ih corresponds to the induction hypothesis in the latter. The tactic
simp [List.findSomeM?] not only applies theorems marked with the @[simp] attribute, but also
unfolds the definition List.findSomeM?. The rewrite tactic rw applies a sequence of theorems as
rewriting rules. The modifier argument← instructs Lean to apply symmetry before rewriting. For
example, the theorem eq_findM, also included in the supplemental material, is a proof that

do' for x in xs do' {

let b ← p x;

if b then { return some x }

};

pure none

is equal to xs.findM? p. Thus, the parameter← eq_findM instructs Lean to replace an occurrence of
xs.findM? p in the proof goal with the do' block above. We use the tactic apply byCases_Bool_bind

to perform case analysis on the result of an action that produces a Boolean value, where the theorem
byCases_Bool_bind has type

theorem byCases_Bool_bind

[Monad m] [LawfulMonad m] (x : m Bool) (f g : Bool → m 𝛽)

(isTrue : f true = g true) (isFalse : f false = g false) : (x >>= f) = (x >>= g)

That is, the monadic programs x >>= f and x >>= g are equal if f true = g true and f false =

g false. Finally, we close the two branches by using simp with the inner induction hypothesis as
an additional simplification rule.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 109. Publication date: August 2022.

109:20 Sebastian Ullrich and Leonardo de Moura

7 FORMALIZATION

While the previous section demonstrated that specific examples of the extended do notation can
be shown to correspond to their expected semantics, that does not conclusively prove that our
translation produces sensible Ð or even type-correct Ð outputs in all cases. Most of our translation
rules are relatively straightforward, but there are subtle details around variable binding and shad-
owing as well as layering and lifting of monad transformers so that we cannot a priori exclude the
possibility of mistakes in them.

In order to increase our trust in the translation’s correctness, we have formulated an operational
semantics of our do notation that gives an alternative, dynamic and even simpler view of the
expected behavior (Figure 10) as well as a corresponding type system that formalizes the expected
static semantics of the notation (Figure 11) such that we expect the following correctness theorem
to hold.

Theorem. For any well-typed do block Γ ⊢ do s : 𝜏 , there exists a unique (up to 𝛼-equivalence)

translation do s ⇝ 𝑒 , which is of the same type (Γ ⊢ 𝑒 : 𝜏) and equivalent under evaluation

(∀𝑣 . do s⇒ 𝑣 ←→ 𝑒 ⇒ 𝑣).

Proof. See below for a strictly stronger statement for the case of Lean as the base language of
terms, formalized and proved in Lean.

We necessarily restrict the semantics to the special case of the identity monad and iteration
over lists (arbitrarily presented as strict, like in the Lean language), as we would not be able to
formulate the rules as such in presence of arbitrary monad and ForM instances. Since the translation
functions are generic over these instances, we believe this is only a minor restriction. The semantics
and type system are otherwise generic over those of the base language, and thus a proof of the
correctness theorem is also dependent on the base semantics, including an implementation of all
monad transformer functions that fulfills the previously presented equations.
In order to focus on the translation and semantics of the do notation instead of these details of

the base language, we decided to verify the correctness theorem in Lean using the Lean language
itself and its existing implementation of monad transformers as the representation of terms, that
is, a shallow embedding of Lean terms (abstracted over Γ and Δ) inside of a deep embedding of do
statements as an inductive datatype. More specifically, statements are represented intrinsically

typed by an inductive family Stmt m 𝜔 Γ ∆ b c α such that the presented typing rules are fulfilled
by definition (Figure 12). The parameters of the type constructor correspond to the variables of the
same name in Figure 11, except that we split 𝑓 into b, c : Bool that separately control break and
continue, respectively, for reasons that will become clear in the next paragraph. As is common with
formalizations, we additionally do not use named variables, but choose de Bruijn notation so that Γ
and Δ are lists of types and variable references indices into those lists, trivializing 𝛼-equivalence.
Bindings outside of the do block are not part of Γ but represented as regular Lean bindings so that
Γ is initially empty. Thus the statement

let x ← . . .; let mut y := . . .; y := pure (x + y)

is represented by the Lean term

Stmt.bind . . . (Stmt.letmut . . . (Stmt.assg 0 (fun ([x]) ([y]) => pure (x + y))))

where the context assignments are destructed into the individual variables by pattern matching
on the heterogeneous lists. The full definitions and proofs available in the supplement [Ullrich
and de Moura 2022b] are written in a literate style explaining further details and exported to
interactive HTML via Alectryon [Pit-Claudel 2020]/LeanInk [Bülow 2022], giving access to type
and goal information without having to install Lean.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 109. Publication date: August 2022.

‘do’ Unchained: Embracing Local Imperativity in a Purely Functional Language (Functional Pearl) 109:21

𝑣 ∈ Val ::= fun x => e | () | true | false | nil | cons 𝑣1 𝑣2 | . . . ⊆ Expr

𝑛 ∈ Neut ::= 𝑣 | return 𝑣 | break | continue ⊆ Stmt

𝜎 ∈ State ≡ Var ⇀ Val

𝑒 ⇒ 𝑣

. . .
⟨𝑠, ∅⟩ ⇒ ⟨𝑛, ∅⟩ 𝑛 ∈ {𝑣, return 𝑣}

do s⇒ 𝑣

⟨𝑠, 𝜎⟩ ⇒ ⟨𝑛, 𝜎 ′⟩

𝑒 [𝜎] ⇒ 𝑣

⟨𝑒, 𝜎⟩ ⇒ ⟨𝑣, 𝜎⟩

⟨𝑠, 𝜎⟩ ⇒ ⟨𝑣, 𝜎 ′⟩ ⟨𝑠 ′[𝑣/𝑥], 𝜎 ′⟩ ⇒ ⟨𝑛, 𝜎 ′′⟩

⟨let x ← s; s′, 𝜎⟩ ⇒ ⟨𝑛, 𝜎 ′′⟩

⟨𝑠, 𝜎⟩ ⇒ ⟨𝑛, 𝜎 ′⟩ 𝑛 ∉ Val

⟨let x ← s; s′, 𝜎⟩ ⇒ ⟨𝑛, 𝜎 ′⟩

𝑥 ∉ 𝜎 𝑒 [𝜎] ⇒ 𝑣 ⟨𝑠, 𝜎 [𝑥 ↦→ 𝑣]⟩ ⇒ ⟨𝑛, 𝜎 ′⟩

⟨let mut x := e; s, 𝜎⟩ ⇒ ⟨𝑛, 𝜎 ′[𝑥 ↦→ ⊥]⟩

𝑥 ∈ 𝜎 𝑒 [𝜎] ⇒ 𝑣

⟨x := e; s, 𝜎⟩ ⇒ ⟨(), 𝜎 [𝑥 ↦→ 𝑣]⟩

𝑒 [𝜎] ⇒ 𝑣

⟨return e, 𝜎⟩ ⇒ ⟨return 𝑣, 𝜎⟩

𝑒 [𝜎] ⇒ nil

⟨for x in e do s, 𝜎⟩ ⇒ ⟨(), 𝜎⟩

𝑒 [𝜎] ⇒ true ⟨𝑠1, 𝜎⟩ ⇒ ⟨𝑛, 𝜎
′⟩

⟨if e then s1 else s2, 𝜎⟩ ⇒ ⟨𝑛, 𝜎
′⟩

𝑒 [𝜎] ⇒ false ⟨𝑠2, 𝜎⟩ ⇒ ⟨𝑛, 𝜎
′⟩

⟨if e then s1 else s2, 𝜎⟩ ⇒ ⟨𝑛, 𝜎
′⟩

𝑒 [𝜎] ⇒ cons 𝑣1 𝑣2

⟨𝑠 [𝑣1/𝑥], 𝜎⟩ ⇒ ⟨𝑛, 𝜎
′⟩ 𝑛 ∈ {(), continue} ⟨for x in 𝑣2 do s, 𝜎 ′⟩ ⇒ ⟨𝑛, 𝜎 ′′⟩

⟨for x in e do s, 𝜎⟩ ⇒ ⟨𝑛, 𝜎 ′′⟩

𝑒 [𝜎] ⇒ cons 𝑣1 𝑣2 ⟨𝑠 [𝑣1/𝑥], 𝜎⟩ ⇒ ⟨break, 𝜎
′⟩

⟨for x in e do s, 𝜎⟩ ⇒ ⟨(), 𝜎 ′⟩

𝑒 [𝜎] ⇒ cons 𝑣1 𝑣2 ⟨𝑠 [𝑣1/𝑥], 𝜎⟩ ⇒ ⟨return 𝑣, 𝜎 ′⟩

⟨for x in e do s, 𝜎⟩ ⇒ ⟨return 𝑣, 𝜎 ′⟩

Fig. 10. Extending a natural semantics 𝑒 ⇒ 𝑣 reducing expressions to values with a rule for do block evaluation
for the special case of the identity monad. A helper relation ⟨𝑠, 𝜎⟩ ⇒ ⟨𝑛, 𝜎 ′⟩ reduces statements to neutral
statements under a mutable state context (a partial map from variables to values, updated via the notation
·[· ↦→ ·]). Immutable bindings are evaluated by immediate substitution in the remainder statement, while
the mutable context is substituted (𝑒 [·]) just before evaluating any nested term 𝑒 . The given value type and
semantics are strict (see cons), but could easily be changed to be lazy.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 109. Publication date: August 2022.

109:22 Sebastian Ullrich and Leonardo de Moura

Γ ⊢ 𝑒 : 𝜏

. . .
Γ | · ⊢nofor 𝑠 :𝑚 𝛼 ↩→ 𝛼

Γ ⊢ do s :𝑚 𝛼 Γ ⊢ () : Unit Γ ⊢ nil : List 𝛼

Γ ⊢ 𝑒 : 𝛼 Γ ⊢ 𝑒 ′ : List 𝛼

Γ ⊢ cons e e′ : List 𝛼

Γ | Δ ⊢𝑓 𝑠 :𝑚 𝛼 ↩→ 𝜔

Γ,Δ ⊢ 𝑒 :𝑚 𝛼

Γ | Δ ⊢𝑓 𝑒 :𝑚 𝛼 ↩→ 𝜔

𝑥 ∉ Δ Γ | Δ ⊢𝑓 𝑠 :𝑚 𝛼 ↩→ 𝜔 Γ, 𝑥 : 𝛼 | Δ ⊢𝑓 𝑠
′
:𝑚 𝛽 ↩→ 𝜔

Γ | Δ ⊢𝑓 let x ← s; s′ :𝑚 𝛽 ↩→ 𝜔

𝑥 ∉ Γ,Δ Γ,Δ ⊢ 𝑒 : 𝛼 Γ | Δ, 𝑥 : 𝛼 ⊢𝑓 𝑠 :𝑚 𝛽 ↩→ 𝜔

Γ | Δ ⊢𝑓 let mut x := e; s :𝑚 𝛽 ↩→ 𝜔

Γ,Δ, 𝑥 : 𝛼 ⊢ 𝑒 : 𝛼

Γ | Δ, 𝑥 : 𝛼 ⊢𝑓 x := e : m Unit ↩→ 𝜔

Γ,Δ ⊢ 𝑒 : Bool Γ | Δ ⊢𝑓 𝑠1 :𝑚 𝛼 ↩→ 𝜔 Γ | Δ ⊢𝑓 𝑠2 :𝑚 𝛼 ↩→ 𝜔

Γ | Δ ⊢𝑓 if e then s1 else s2 :𝑚 𝛼 ↩→ 𝜔

Γ,Δ ⊢ 𝑒 : 𝜔

Γ | Δ ⊢𝑓 return e :𝑚 𝛼 ↩→ 𝜔

𝑥 ∉ Δ Γ,Δ ⊢ 𝑒 : List 𝛼 Γ, 𝑥 : 𝛼 | Δ ⊢for 𝑠 : m Unit ↩→ 𝜔

Γ | Δ ⊢𝑓 for x in e do s : m Unit ↩→ 𝜔

Γ | Δ ⊢for break :𝑚 𝛼 ↩→ 𝜔 Γ | Δ ⊢for continue :𝑚 𝛼 ↩→ 𝜔

Fig. 11. Extending an expression typing relation Γ ⊢ 𝑒 : 𝜏 with a rule for typing do blocks via a statement
typing relation Γ | Δ ⊢𝑓 𝑠 :𝑚 𝛼 ↩→ 𝜔 over some monad𝑚. Δ is an additional context of mutable variables,
initially empty. 𝜔 is the return type expected inside return statements, initially equal to 𝛼 but may diverge
from it in let bindings. 𝑓 ∈ {for, nofor} controls occurrences of break and continue.

inductive Stmt (m : Type → Type) (𝜔 : Type) :

(Γ ∆ : List Type) → (b c : Bool) → (α : Type) → Type where

| expr (e : Γ ⊢ ∆ ⊢ m α) : Stmt m 𝜔 Γ ∆ b c α

| bind (s : Stmt m 𝜔 Γ ∆ b c α) (s' : Stmt m 𝜔 (α :: Γ) ∆ b c 𝛽) :

Stmt m 𝜔 Γ ∆ b c 𝛽

| letmut (e : Γ ⊢ ∆ ⊢ α) (s : Stmt m 𝜔 Γ (α :: ∆) b c 𝛽) : Stmt m 𝜔 Γ ∆ b c 𝛽

| assg (x : Fin ∆.length) (e : Γ ⊢ ∆ ⊢ ∆.get x) : Stmt m 𝜔 Γ ∆ b c Unit

| ite (e : Γ ⊢ ∆ ⊢ Bool) (s1 s2 : Stmt m 𝜔 Γ ∆ b c α) : Stmt m 𝜔 Γ ∆ b c α

| ret (e : Γ ⊢ ∆ ⊢ 𝜔) : Stmt m 𝜔 Γ ∆ b c α

| sfor (e : Γ ⊢ ∆ ⊢ List α) (s : Stmt m 𝜔 (α :: Γ) ∆ true true Unit) :

Stmt m 𝜔 Γ ∆ b c Unit

| sbreak : Stmt m 𝜔 Γ ∆ true c α

| scont : Stmt m 𝜔 Γ ∆ b true α

Fig. 12. Inductive family representing intrinsically typed do statements with shallowly embedded terms. The
notation Γ ⊢ Δ ⊢ 𝛼 stands for the type of functions mapping values (two heterogeneous lists) corresponding to
the types in Γ and Δ to a value of 𝛼 . Each constructor implements and corresponds to, in order, a typing rule
from Figure 11. Of particular note are constructors changing indices of the type family: bind and sfor extend
the immutable context while letmut extends the mutable context, which is accessed by assg (assignment),
representing the target variable as an index into the context, i.e. a de Bruijn index.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 109. Publication date: August 2022.

‘do’ Unchained: Embracing Local Imperativity in a Purely Functional Language (Functional Pearl) 109:23

This very precise representation of statements not only guarantees that the translation functions
always produce unique, type-correct statements and terms as long as they are themselves type-
correct Lean functions, but it also tells us much, and gives guarantees about, their working just by
looking at their signatures:

S [Monad m] : Stmt m 𝜔 Γ (∆ ++ [α]) b c 𝛽 → Stmt (StateT α m) 𝜔 (α :: Γ) ∆ b c 𝛽

R [Monad m] : Stmt m 𝜔 Γ ∆ b c α → Stmt (ExceptT 𝜔 m) Empty Γ ∆ b c α

L [Monad m] : Stmt m 𝜔 Γ ∆ b c α → Stmt (ExceptT PUnit m) 𝜔 Γ ∆ b c α

B [Monad m] : Stmt m 𝜔 Γ ∆ b c α → Stmt (ExceptT PUnit m) 𝜔 Γ ∆ false c α

C [Monad m] : Stmt m 𝜔 Γ ∆ false c α → Stmt (ExceptT PUnit m) 𝜔 Γ ∆ false false α

D [Monad m] : Stmt m Empty Γ ∅ false false α → (Γ ⊢ m α)

We can immediately see that S transforms a mutable variable (always the outermost one, so there
is no need for the parameter 𝑦 with de Bruijn notation) to an immutable variable, that R eliminates
return statements (by setting their expected type to the uninhabited type Empty), and B and C
break and continue statements, respectively, as well as what monadic layers they each introduce.
Finally, D transforms a statement free of return and unbounded occurrences of mutable variables,
break, and continue to a term of the expected type.

The choice of shallowly embedded terms obviates the dependency on a presentation of the natural
semantics for the base language, and analogously we can express evaluation of statements directly
as a denotational function ⟦·⟧ : Do Id α → α (where Do m α is an abbreviation of Stmt m α ∅ ∅

false false α) instead of an inductive predicate. Lean again guarantees that evaluation of any
well-typed statement is unambiguous and terminating this way, which are desirable properties that
we would expect to hold as long as the base language also fulfills them. In fact, the implementation
as a function makes it trivial to lift the restriction on the base monad and strengthen ⟦·⟧ into the type
[Monad m] → Do m α → m α. This generalization is in fact crucial for our proof of the correctness
theorem because it allows us to verify each translation function individually and modularly, finally
composing the correctness proofs of R and D into the following succinct generalization of the
correctness theorem over any monad obeying the laws from Figure 2.

def Do.trans [Monad m] (s : Do m α) : m α := runCatch (D (R s) ∅) -- (1′)

theorem Do.trans_eq_eval [Monad m] [LawfulMonad m] :

∀ s : Do m α, Do.trans s = ⟦s⟧

Proving its correctness is not the only application of Do.trans, however. While our choice of
mixed deep/shallow embedding by design blurs the distinction between the translated language
and the implementation language, we can still see two separate stages in the signature of the main
translation function, D: it first takes a Stmt, i.e. compile-time information, and then an assignment
of the immutable context Γ, that is, run-time information. Indeed, it is possible to partially evaluate
D and the other translation functions given a Stmt but not the context assignment (or values of
any other variables free in expressions nested in Stmt) such that the Stmt is completely erased.
While Lean does not natively support this kind of multi-stage programming, we demonstrate in
the supplement how the built-in simplifier can be used as a partial evaluator for this purpose. Thus
the formal translation could be used to replace the macro implementation while providing more
static guarantees, though the latter is still more desirable in terms of efficiency and modularity.

8 EVALUATION

In this section, we describe our experience with the extended do notation. We are developing Lean 4
in Lean itself. In October of 2020, we finally compiled Lean 4 using itself and started using the new
notation in our codebase. We believe it is making us more productive, and have already refactored
many existing do blocks into ones making use of the new features. The user feedback so far has

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 109. Publication date: August 2022.

109:24 Sebastian Ullrich and Leonardo de Moura

Fig. 13. Highlighting the do keyword belonging to a return statement under the cursor using the standard
łdocument highlightž request of the Language Server Protocol9, shown here using Visual Studio Code

also been very positive, and the extended do notation is used in many applications and packages
developed by the Lean community: out of 43 GitHub repositories written in Lean with the topic
łlean4ž8, 31 repositories by 20 different authors make use of at least let mut and for. Thus we feel
safe to claim that the use of extended do notation in Lean 4 programming has by now become
ubiquitous.

At the time of writing, the Lean 4 codebase itself contains 459 occurrences of let mut declarations,
and 604 occurrences of for. The codebase also contains 3185 occurrences of return, though many
of them are equivalent to pure, i.e. they do not actually short-circuit evaluation but merely avoid
the need for parentheses around the return value.
In our first implementation of the extended do notation, we did not have the mut modifier, and

any variable could be locally mutated. We assumed it would make the system more convenient to
use. However, we have reverted this design decision after we encountered a few non-trivial bugs in
our codebase. All bugs occurred in code containing nested do blocks such as

do let x := a

. . .

f (fun y => do

. . .

x := b

. . .)

. . .

In the example above, the user intended to update the variable x in the outer do block, but the
reassignment x := b is in the scope of a different do. We say themistake was due to łscope confusion.ž
Our new procedure, described earlier in this paper, prevents this kind of mistake because it produces
an error message if the nested block does not contain a let mut x := . . . declaration.We also remark
the mut keyword dramatically simplifies the implementation by making scope checks a simple
decision local to do notation as manifested in the helper function 𝑆𝑦 . We conjecture scope confusion
may also occur when using return. In practice, this does not seem to be an issue since the expected
type for the nested do block is often different from the outer one. However, as a precaution, we
have implemented highlighting of the corresponding do keyword when users place their cursor on
a return statement in any editor supporting the Lean 4 language server (Figure 13).
We are pleasantly surprised that users are also using the extended do notation in pure code via

the identity monad. For example, the wrapAt? function in the Cli package10 uses the following for

statement.

8https://github.com/topics/lean4
9https://microsoft.github.io/language-server-protocol
10https://github.com/mhuisi/lean4-cli

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 109. Publication date: August 2022.

https://github.com/topics/lean4
https://microsoft.github.io/language-server-protocol
https://github.com/mhuisi/lean4-cli

‘do’ Unchained: Embracing Local Imperativity in a Purely Functional Language (Functional Pearl) 109:25

Id.run $ do . . .

let mut line := line

let mut result := #[]

for i in [:resultLineCount] do

result := result.push (line.take maxWidth)

line := line.drop maxWidth

return "\n".intercalate result.toList

The notation #[] denotes the empty array, and [:resultLineCount] is a range of natural numbers
from 0 up to resultLineCount (exclusively).

Users also seem to prefer the for statement even when it corresponds to an existing combinator
such as foldl. For example, the translation verifier reopt-vcg11 contains the following code
fragment.

do . . .

let mut stats : GoalStats := GoalStats.init

for r in results do

stats := stats.addResult r

pure stats

As a final example, we give the function hasBadParamDep? from the Lean 4 codebase combining
nested iteration, nested actions, and early return.

def hasBadParamDep? (ys : Array Expr) (indParams : Array Expr)

: MetaM (Option (Expr × Expr)) := do

for p in indParams do

let pType ← inferType p

for y in ys do

if (← dependsOn pType y) then

return some (p, y)

return none

We can use the same approach we used in theorem eq_findSome_findM to prove that it is equivalent
to a function defined using findSomeM? and findM?.

9 RELATED WORK

We are not aware of similar formal work exploring imperative extensions to a purely functional
language, but there are multiple existing libraries with some overlap. Perhaps the library closest
to our work is the proof-of-concept Haskell package ImperativeHaskell12, which via creative use
of custom operators encodes mutable variables, for counting loops, and early return. The imple-
mentation is based on mutable references (IORef) and limited to IO as the base monad, which
is a significant restriction in practice that in particular would severely complicate verification of
programs using it. We believe that any implementation of these features on top of arbitrary monads
would require more expressive desugaring than custom operators such as presented in this paper.
The early library13 makes use of a GHC plugin to provide a syntax for early return when binding
particular values, inspired by a similar syntax in Rust. The control-monad-loop library14 provides
a looping function with continue and break functionality encoded via a continuations-carrying
monad, but none of the other effects. It also supports returning values from breaks, which we have
considered but discarded for the time being for lack of convincing use cases.

11https://github.com/GaloisInc/reopt-vcg
12https://hackage.haskell.org/package/ImperativeHaskell
13https://github.com/inflex-io/early
14https://hackage.haskell.org/package/control-monad-loop-0.1

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 109. Publication date: August 2022.

https://github.com/GaloisInc/reopt-vcg
https://hackage.haskell.org/package/ImperativeHaskell
https://github.com/inflex-io/early
https://hackage.haskell.org/package/control-monad-loop-0.1

109:26 Sebastian Ullrich and Leonardo de Moura

Apart from these imperative extensions, we are aware of three further extensions of Haskell’s
do notation: Marlow et al. [2016] optimize its desugaring so that some blocks can be run using
only Applicative instead of Monad operations, making do blocks both more general and potentially
more efficient. Erkök and Launchbury [2002] add an mdo variant of the notation that changes the
semantics of monadic bindings to allow recursion. Both extensions have since been implemented as
language extensions of the GHC compiler, and should be compatible with our imperative extensions.
Paterson [2001] adapts the notation to arrows, a generalization of monads, which we have not
explored in Lean so far.
Outside of Haskell, the Scala library effectful15 translates for loops in a do-like macro to appli-

cations of traverse, but does not combine this with support for further control flow like break,
continue, and return, or for local mutation. Idris features an extended do notation [Brady 2014]
that allows giving łalternativež patterns for a binding, which if matched determine the result of the
whole block without executing the remaining statements:

do Just x_ok ← readNumber | Nothing => pure Nothing

Just y_ok ← readNumber | Nothing => pure Nothing

pure (Just (x_ok, y_ok))

This can be seen as an implementation of early return, though without nesting in further control
flow statements such as if or for. A similar syntax was later added to Agda [Bove et al. 2009]. The
Koka language [Leijen 2014] is a function-oriented language with built-in effects and as such does
not employ monads or do notation. However, we note that it has support for both mutable variables
and multi-shot effects such as nondeterminism, for the combination of which it has assigned the
same łstrand-localž semantics as we discussed in Section 2.

Gibbons and dos Santos Oliveira [2009] identifymapping and accumulating as the core aspects of
imperative iteration, and show that the traverse operator can represent both of them simultaneously
in functional code. In our paper, we focused on the more restrictive folds, which embody only
the accumulating part, since they cover most use cases where local mutation or extended control
flow can profitably be applied in our experience. However, it is possible to extend our approach to
traverse, e.g. with a new for mut x in xs do s syntax that for a mutable variable 𝑥𝑠 allows 𝑥 to
be reassigned in the loop body and eventually reassigns the thus mapped collection to 𝑥𝑠 .

The idea of rewriting code using mutable variables into equivalent pure code to make it amenable
to formal verification has previously been explored by this paper’s first author in Ullrich [2016] in
the context of translating a subset of Rust to Lean. As in our translation, mutation in straight-line
code is translated to shadowing, though for conditional statements, the continuation is duplicated,
which is less of an issue when compilation of the translated code is not a goal. Similarly, both
terminating and non-terminating loops are supported via a fold-like monadic loop combinator, but
the combinator is not computable (i.e. executable) because it employs classical logic to łdecidež
termination. Termination must instead be proved or disproved after translation. The translation also
handles some advanced cases like turning mutable references into lenses [Foster et al. 2007], which
we have no plans of supporting for our use cases. Ho and Protzenko [2022] recently introduced a
similar but more general approach for verification of Rust code.

Nipkow [1998] utilizes a formalization approach very similar to our mixed deep/shallow embed-
ding, calling it łtaking the semantic viewž. The lack of dependent types in Isabelle/HOL, however,
would complicate representing a heterogeneous context like we did.

15https://github.com/pelotom/effectful

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 109. Publication date: August 2022.

https://github.com/pelotom/effectful

‘do’ Unchained: Embracing Local Imperativity in a Purely Functional Language (Functional Pearl) 109:27

10 CONCLUSION

We have extended do notation with further features inspired by imperative programming by giving
a translation to purely functional programs that can still be reasoned over, and compiled into
efficient executable code. Our experience, and those of third parties, with an implementation in
the Lean 4 programming language and theorem prover suggests that the extended notation is
quickly embraced and leads to simple-to-understand code that can be less abstract but often no
less terse than equivalent code using combinators. While implementing the presented extensions
ad-hoc as demonstrated using Lean’s expressive macro system might not be possible in most other
theorem provers or programming languages, we believe that a built-in implementation as described
in Section 5.1 would be a worthwhile addition to other functional languages as well.
Just like McBride and Paterson [2008] state that

łThe explosion of categorical structure in functional programming [...] should not, we
suggest, be a cause for alarm. Why should we not profit from whatever structure we
can sniff out, abstract and re-use? The challenge is to avoid a chaotic proliferation of
peculiar and incompatible notations. If we want to rationalise the notational impact of
all these structures, perhaps we should try to recycle the notation we already possess.ž

we say: the embrace of imperative patterns in purely functional programming where reasonable
and not at odds with functional principles should not, we suggest, be a cause for alarm. Why
should we not profit from whatever control flow pattern we can sniff out, abstract and re-use? The
challenge is to avoid a chaotic proliferation of peculiar and incomprehensible combinators. If we
want to lessen the cognitive impact of categorical structures, perhaps we should try to recycle the
imperative notation programmers already possess familiarity with.

ACKNOWLEDGMENTS

We thank Sebastian Graf, Jakob von Raumer, Max Wagner, and the anonymous reviewers for their
extensive comments, corrections, and advice.

DATA AVAILABILITY STATEMENT

The supplemental material containing the reference implementation, examples, and equivalence
proof is openly available at https://doi.org/10.5281/zenodo.6684085 [Ullrich and de Moura 2022b].

REFERENCES

Ana Bove, Peter Dybjer, and Ulf Norell. 2009. A brief overview of Agdaśa functional language with dependent types. In

International Conference on Theorem Proving in Higher Order Logics. Springer, 73ś78. https://doi.org/10.1007/978-3-642-

03359-9_6

Edwin Brady. 2013. Idris, a general-purpose dependently typed programming language: Design and implementation. Journal

of functional programming 23, 5 (2013), 552ś593. https://doi.org/10.1017/S095679681300018X

Edwin Brady. 2014. Resource-dependent algebraic effects. In International Symposium on Trends in Functional Programming.

Springer, 18ś33. https://doi.org/10.1007/978-3-319-14675-1_2

Niklas Bülow. 2022. Proof Visualization for the Lean 4 Theorem Prover. https://pp.ipd.kit.edu/publication.php?id=b%C3%

BClow22bachelorarbeit

Thierry Coquand and Gérard Huet. 1988. The calculus of constructions. Inform. and Comput. 76, 2-3 (1988), 95ś120.

https://doi.org/10.1016/0890-5401(88)90005-3

Thierry Coquand and Christine Paulin. 1990. Inductively defined types. In COLOG-88 (Tallinn, 1988). Springer, Berlin, 50ś66.

https://doi.org/10.1007/3-540-52335-9_47

Leonardo de Moura and Sebastian Ullrich. 2021. The Lean 4 Theorem Prover and Programming Language. In International

Conference on Automated Deduction. Springer, 625ś635. https://doi.org/10.1007/978-3-030-79876-5_37

Levent Erkök and John Launchbury. 2002. A recursive do for Haskell. In Proceedings of the 2002 ACM SIGPLAN workshop on

Haskell. 29ś37. https://doi.org/10.1145/581690.581693

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 109. Publication date: August 2022.

https://doi.org/10.5281/zenodo.6684085
https://doi.org/10.1007/978-3-642-03359-9_6
https://doi.org/10.1007/978-3-642-03359-9_6
https://doi.org/10.1017/S095679681300018X
https://doi.org/10.1007/978-3-319-14675-1_2
https://pp.ipd.kit.edu/publication.php?id=b%C3%BClow22bachelorarbeit
https://pp.ipd.kit.edu/publication.php?id=b%C3%BClow22bachelorarbeit
https://doi.org/10.1016/0890-5401(88)90005-3
https://doi.org/10.1007/3-540-52335-9_47
https://doi.org/10.1007/978-3-030-79876-5_37
https://doi.org/10.1145/581690.581693

109:28 Sebastian Ullrich and Leonardo de Moura

J Nathan Foster, Michael B Greenwald, Jonathan T Moore, Benjamin C Pierce, and Alan Schmitt. 2007. Combinators for

bidirectional tree transformations: A linguistic approach to the view-update problem. ACM Transactions on Programming

Languages and Systems (TOPLAS) 29, 3 (2007), 17śes. https://doi.org/10.1145/1232420.1232424

Jeremy Gibbons and Bruno César dos Santos Oliveira. 2009. The essence of the iterator pattern. Journal of functional

programming 19, 3 and 4 (2009). https://doi.org/10.1017/S0956796809007291

Son Ho and Jonathan Protzenko. 2022. Aeneas: Rust Verification by Functional Translation. (2022). To appear at International

Conference on Functional Programming (ICFP).

Simon Peyton Jones. 2003. Haskell 98 language and libraries: the revised report. Cambridge University Press.

Richard A Kelsey. 1995. A correspondence between continuation passing style and static single assignment form. ACM

SIGPLAN Notices 30, 3 (1995), 13ś22. https://doi.org/10.1145/202529.202532

Daan Leijen. 2014. Koka: Programming with Row Polymorphic Effect Types. Electronic Proceedings in Theoretical Computer

Science 153 (jun 2014), 100ś126. https://doi.org/10.4204/eptcs.153.8

Simon Marlow, Simon Peyton Jones, Edward Kmett, and Andrey Mokhov. 2016. Desugaring Haskell’s do-notation into

applicative operations. ACM SIGPLAN Notices 51, 12 (2016), 92ś104. https://doi.org/10.1145/2976002.2976007

Nicholas D. Matsakis and Felix S. Klock, II. 2014. The Rust Language. In Proceedings of the 2014 ACM SIGAda Annual

Conference on High Integrity Language Technology (Portland, Oregon, USA) (HILT ’14). ACM, New York, NY, USA, 103ś104.

https://doi.org/10.1145/2663171.2663188

LukeMaurer, Paul Downen, ZenaM. Ariola, and Simon Peyton Jones. 2017. CompilingWithout Continuations. In Proceedings

of the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation (Barcelona, Spain) (PLDI

2017). ACM, New York, NY, USA, 482ś494. https://doi.org/10.1145/3062341.3062380

Conor McBride and RA Paterson. 2008. Applicative programming with effects. Journal of functional programming 18, 1

(2008), 1ś13. https://doi.org/10.1017/S0956796807006326

Eugenio Moggi. 1991. Notions of computation and monads. Information and computation 93, 1 (1991), 55ś92. https:

//doi.org/10.1016/0890-5401(91)90052-4

Tobias Nipkow. 1998. Winskel is (almost) Right: Towards a Mechanized Semantics Textbook. Formal Aspects of Computing

10 (1998), 171ś186. https://doi.org/10.1007/3-540-62034-6_48

Ross Paterson. 2001. A new notation for arrows. ACM SIGPLAN Notices 36, 10 (2001), 229ś240. https://doi.org/10.1145/

507635.507664

Simon L. Peyton Jones. 1996. Compiling Haskell by program transformation: a report from the trenches. In Proc. European

Symp. on Programming. Springer-Verlag, 18ś44. https://doi.org/10.1007/3-540-61055-3_27

Clément Pit-Claudel. 2020. Untangling Mechanized Proofs. In Proceedings of the 13th ACM SIGPLAN International Conference

on Software Language Engineering (Virtual, USA) (SLE 2020). Association for Computing Machinery, New York, NY, USA,

155ś174. https://doi.org/10.1145/3426425.3426940

Barry K Rosen, Mark N Wegman, and F Kenneth Zadeck. 1988. Global value numbers and redundant computations.

In Proceedings of the 15th ACM SIGPLAN-SIGACT symposium on Principles of programming languages. 12ś27. https:

//doi.org/10.1145/73560.73562

Sebastian Ullrich. 2016. Simple Verification of Rust Programs via Functional Purification. Master’s thesis. Karlsruher Institut

für Technologie (KIT). https://pp.ipd.kit.edu/publication.php?id=ullrich16masterarbeit

Sebastian Ullrich and Leonardo de Moura. 2022a. Beyond Notations: Hygienic Macro Expansion for Theorem Proving

Languages. Log. Methods Comput. Sci. 18, 2. https://doi.org/10.46298/lmcs-18(2:1)2022

Sebastian Ullrich and Leonardo de Moura. 2022b. Supplement of "’do’ Unchained: Embracing Local Imperativity in a Purely

Functional Language". https://doi.org/10.5281/zenodo.6684085

Philip Wadler. 1990. Comprehending monads. In Proceedings of the 1990 ACM conference on LISP and functional programming.

61ś78. https://doi.org/10.1017/S0960129500001560

Philip Wadler and Stephen Blott. 1989. How to make ad-hoc polymorphism less ad hoc. In Proceedings of the 16th ACM

SIGPLAN-SIGACT symposium on Principles of programming languages. ACM, 60ś76. https://doi.org/10.1145/75277.75283

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 109. Publication date: August 2022.

https://doi.org/10.1145/1232420.1232424
https://doi.org/10.1017/S0956796809007291
https://doi.org/10.1145/202529.202532
https://doi.org/10.4204/eptcs.153.8
https://doi.org/10.1145/2976002.2976007
https://doi.org/10.1145/2663171.2663188
https://doi.org/10.1145/3062341.3062380
https://doi.org/10.1017/S0956796807006326
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1007/3-540-62034-6_48
https://doi.org/10.1145/507635.507664
https://doi.org/10.1145/507635.507664
https://doi.org/10.1007/3-540-61055-3_27
https://doi.org/10.1145/3426425.3426940
https://doi.org/10.1145/73560.73562
https://doi.org/10.1145/73560.73562
https://pp.ipd.kit.edu/publication.php?id=ullrich16masterarbeit
https://doi.org/10.46298/lmcs-18(2:1)2022
https://doi.org/10.5281/zenodo.6684085
https://doi.org/10.1017/S0960129500001560
https://doi.org/10.1145/75277.75283

	Abstract
	1 Introduction
	2 Local Mutation
	3 Early Return
	4 Iteration
	5 Implementation
	5.1 Reference Implementation
	5.2 Code Generation
	5.3 Full Implementation

	6 Reasoning
	7 Formalization
	8 Evaluation
	9 Related Work
	10 Conclusion
	Acknowledgments
	References

