Binary Search Trees

If the type of keys can be totally ordered -- that is, it supports a well-behaved comparison -- then maps can be implemented with binary search trees (BSTs). Insert and lookup operations on BSTs take time proportional to the height of the tree. If the tree is balanced, the operations therefore take logarithmic time.

This example is based on a similar example found in the "Software Foundations" book (volume 3).

We use Nat as the key type in our implementation of BSTs, since it has a convenient total order with lots of theorems and automation available. We leave as an exercise to the reader the generalization to arbitrary types.

inductive Tree (β : Type v) where | leaf | node (left : Tree β) (key : Nat) (value : β) (right : Tree β) deriving Repr

The function contains returns true iff the given tree contains the key k.

def Tree.contains (t : Tree β) (k : Nat) : Bool := match t with | leaf => false | node left key unused variable `value` note: this linter can be disabled with `set_option linter.unusedVariables false`value right => if k < key then left.contains k else if key < k then right.contains k else true

t.find? k returns some v if v is the value bound to key k in the tree t. It returns none otherwise.

def Tree.find? (t : Tree β) (k : Nat) : Option β := match t with | leaf => none | node left key value right => if k < key then left.find? k else if key < k then right.find? k else some value

t.insert k v is the map containing all the bindings of t along with a binding of k to v.

def Tree.insert (t : Tree β) (k : Nat) (v : β) : Tree β := match t with | leaf => node leaf k v leaf | node left key value right => if k < key then node (left.insert k v) key value right else if key < k then node left key value (right.insert k v) else node left k v right

Let's add a new operation to our tree: converting it to an association list that contains the key--value bindings from the tree stored as pairs. If that list is sorted by the keys, then any two trees that represent the same map would be converted to the same list. Here's a function that does so with an in-order traversal of the tree.

def Tree.toList (t : Tree β) : List (Nat × β) := match t with | leaf => [] | node l k v r => l.toList ++ [(k, v)] ++ r.toListTree.node (Tree.node (Tree.leaf) 1 "one" (Tree.leaf)) 2 "two" (Tree.node (Tree.leaf) 3 "three" (Tree.leaf))#eval Tree.leaf.insert 2 "two" |>.insert 3 "three" |>.insert 1 "one"
Tree.node (Tree.node (Tree.leaf) 1 "one" (Tree.leaf)) 2 "two" (Tree.node (Tree.leaf) 3 "three" (Tree.leaf))
[(1, "one"), (2, "two"), (3, "three")]#eval Tree.leaf.insert 2 "two" |>.insert 3 "three" |>.insert 1 "one" |>.toList
[(1, "one"), (2, "two"), (3, "three")]

The implementation of Tree.toList is inefficient because of how it uses the ++ operator. On a balanced tree its running time is linearithmic, because it does a linear number of concatenations at each level of the tree. On an unbalanced tree it's quadratic time. Here's a tail-recursive implementation than runs in linear time, regardless of whether the tree is balanced:

def Tree.toListTR (t : Tree β) : List (Nat × β) := go t [] where go (t : Tree β) (acc : List (Nat × β)) : List (Nat × β) := match t with | leaf => acc | node l k v r => go l ((k, v) :: go r acc)

We now prove that t.toList and t.toListTR return the same list. The proof is on induction, and as we used the auxiliary function go to define Tree.toListTR, we use the auxiliary theorem go to prove the theorem.

The proof of the auxiliary theorem is by induction on t. The generalizing acc modifier instructs Lean to revert acc, apply the induction theorem for Trees, and then reintroduce acc in each case. By using generalizing, we obtain the more general induction hypotheses

Recall that the combinator tac <;> tac' runs tac on the main goal and tac' on each produced goal, concatenating all goals produced by tac'. In this theorem, we use it to apply simp and close each subgoal produced by the induction tactic.

The simp parameters toListTR.go and toList instruct the simplifier to try to reduce and/or apply auto generated equation theorems for these two functions. The parameter * instructs the simplifier to use any equation in a goal as rewriting rules. In this particular case, simp uses the induction hypotheses as rewriting rules. Finally, the parameter List.append_assoc instructs the simplifier to use the List.append_assoc theorem as a rewriting rule.

theorem Tree.toList_eq_toListTR (t : Tree β) : t.toList = t.toListTR := β:Type u_1t:Tree βt.toList = t.toListTR All goals completed! 🐙 where go (t : Tree β) (acc : List (Nat × β)) : toListTR.go t acc = t.toList ++ acc := β:Type u_1t✝:Tree βt:Tree βacc:List (Nat × β)toListTR.go t acc = t.toList ++ acc β:Type u_1t:Tree βacc:List (Nat × β)toListTR.go leaf acc = leaf.toList ++ accβ:Type u_1t:Tree βleft✝:Tree βkey✝:Natvalue✝:βright✝:Tree βleft_ih✝:∀ (acc : List (Nat × β)), toListTR.go left✝ acc = left✝.toList ++ accright_ih✝:∀ (acc : List (Nat × β)), toListTR.go right✝ acc = right✝.toList ++ accacc:List (Nat × β)toListTR.go (left✝.node key✝ value✝ right✝) acc = (left✝.node key✝ value✝ right✝).toList ++ acc β:Type u_1t:Tree βacc:List (Nat × β)toListTR.go leaf acc = leaf.toList ++ accβ:Type u_1t:Tree βleft✝:Tree βkey✝:Natvalue✝:βright✝:Tree βleft_ih✝:∀ (acc : List (Nat × β)), toListTR.go left✝ acc = left✝.toList ++ accright_ih✝:∀ (acc : List (Nat × β)), toListTR.go right✝ acc = right✝.toList ++ accacc:List (Nat × β)toListTR.go (left✝.node key✝ value✝ right✝) acc = (left✝.node key✝ value✝ right✝).toList ++ acc All goals completed! 🐙

The [csimp] annotation instructs the Lean code generator to replace any Tree.toList with Tree.toListTR when generating code.

@[csimp] theorem Tree.toList_eq_toListTR_csimp : @Tree.toList = @Tree.toListTR := @toList = @toListTR β:Type u_1t:Tree βt.toList = t.toListTR All goals completed! 🐙

The implementations of Tree.find? and Tree.insert assume that values of type tree obey the BST invariant: for any non-empty node with key k, all the values of the left subtree are less than k and all the values of the right subtree are greater than k. But that invariant is not part of the definition of tree.

So, let's formalize the BST invariant. Here's one way to do so. First, we define a helper ForallTree to express that idea that a predicate holds at every node of a tree:

inductive ForallTree (p : Nat β Prop) : Tree β Prop | leaf : ForallTree p .leaf | node : ForallTree p left p key value ForallTree p right ForallTree p (.node left key value right)

Second, we define the BST invariant: An empty tree is a BST. A non-empty tree is a BST if all its left nodes have a lesser key, its right nodes have a greater key, and the left and right subtrees are themselves BSTs.

inductive BST : Tree β Prop | leaf : BST .leaf | node : ForallTree (fun k unused variable `v` note: this linter can be disabled with `set_option linter.unusedVariables false`v => k < key) left ForallTree (fun k unused variable `v` note: this linter can be disabled with `set_option linter.unusedVariables false`v => key < k) right BST left BST right BST (.node left key value right)

We can use the macro command to create helper tactics for organizing our proofs. The macro have_eq x y tries to prove x = y using linear arithmetic, and then immediately uses the new equality to substitute x with y everywhere in the goal.

The modifier local specifies the scope of the macro.

/-- The `have_eq lhs rhs` tactic (tries to) prove that `lhs = rhs`, and then replaces `lhs` with `rhs`. -/ local macro "have_eq " lhs:term:max rhs:term:max : tactic => `(tactic| (have h : $lhs = $rhs := -- TODO: replace with linarith by simp +arith at *; apply Nat.le_antisymm <;> assumption try subst $lhs))

The by_cases' e is just the regular by_cases followed by simp using all hypotheses in the current goal as rewriting rules. Recall that the by_cases tactic creates two goals. One where we have h : e and another one containing h : ¬ e. The simplifier uses the h to rewrite e to True in the first subgoal, and e to False in the second. This is particularly useful if e is the condition of an if-statement.

/-- `by_cases' e` is a shorthand form `by_cases e <;> simp[*]` -/ local macro "by_cases' " e:term : tactic => `(tactic| by_cases $e <;> simp [*])

We can use the attribute [simp] to instruct the simplifier to reduce given definitions or apply rewrite theorems. The local modifier limits the scope of this modification to this file.

attribute [local simp] Tree.insert

We now prove that Tree.insert preserves the BST invariant using induction and case analysis. Recall that the tactic . tac focuses on the main goal and tries to solve it using tac, or else fails. It is used to structure proofs in Lean. The notation ‹e› is just syntax sugar for (by assumption : e). That is, it tries to find a hypothesis h : e. It is useful to access hypothesis that have auto generated names (aka "inaccessible") names.

theorem Tree.forall_insert_of_forall (h₁ : ForallTree p t) (h₂ : p key value) : ForallTree p (t.insert key value) := β✝:Type u_1p:Natβ✝Propt:Tree β✝key:Natvalue:β✝h₁:ForallTree p th₂:p key valueForallTree p (t.insert key value) induction h₁ with | leaf => All goals completed! 🐙 | node hl hp hr ihl ihr => β✝:Type u_1p:Natβ✝Propt:Tree β✝key:Natvalue:β✝h₂:p key valueleft✝:Tree β✝k:Natvalue✝:β✝right✝:Tree β✝hl:ForallTree p left✝hp:p k value✝hr:ForallTree p right✝ihl:ForallTree p (left✝.insert key value)ihr:ForallTree p (right✝.insert key value)ForallTree p ((left✝.node k value✝ right✝).insert key value) β✝:Type u_1p:Natβ✝Propt:Tree β✝key:Natvalue:β✝h₂:p key valueleft✝:Tree β✝k:Natvalue✝:β✝right✝:Tree β✝hl:ForallTree p left✝hp:p k value✝hr:ForallTree p right✝ihl:ForallTree p (left✝.insert key value)ihr:ForallTree p (right✝.insert key value)h✝:key < kForallTree p ((left✝.insert key value).node k value✝ right✝)β✝:Type u_1p:Natβ✝Propt:Tree β✝key:Natvalue:β✝h₂:p key valueleft✝:Tree β✝k:Natvalue✝:β✝right✝:Tree β✝hl:ForallTree p left✝hp:p k value✝hr:ForallTree p right✝ihl:ForallTree p (left✝.insert key value)ihr:ForallTree p (right✝.insert key value)h✝:¬key < kForallTree p (if k < key then left✝.node k value✝ (right✝.insert key value) else left✝.node key value right✝) β✝:Type u_1p:Natβ✝Propt:Tree β✝key:Natvalue:β✝h₂:p key valueleft✝:Tree β✝k:Natvalue✝:β✝right✝:Tree β✝hl:ForallTree p left✝hp:p k value✝hr:ForallTree p right✝ihl:ForallTree p (left✝.insert key value)ihr:ForallTree p (right✝.insert key value)h✝:key < kForallTree p ((left✝.insert key value).node k value✝ right✝) All goals completed! 🐙 β✝:Type u_1p:Natβ✝Propt:Tree β✝key:Natvalue:β✝h₂:p key valueleft✝:Tree β✝k:Natvalue✝:β✝right✝:Tree β✝hl:ForallTree p left✝hp:p k value✝hr:ForallTree p right✝ihl:ForallTree p (left✝.insert key value)ihr:ForallTree p (right✝.insert key value)h✝:¬key < kForallTree p (if k < key then left✝.node k value✝ (right✝.insert key value) else left✝.node key value right✝) β✝:Type u_1p:Natβ✝Propt:Tree β✝key:Natvalue:β✝h₂:p key valueleft✝:Tree β✝k:Natvalue✝:β✝right✝:Tree β✝hl:ForallTree p left✝hp:p k value✝hr:ForallTree p right✝ihl:ForallTree p (left✝.insert key value)ihr:ForallTree p (right✝.insert key value)h✝¹:¬key < kh✝:k < keyForallTree p (left✝.node k value✝ (right✝.insert key value))β✝:Type u_1p:Natβ✝Propt:Tree β✝key:Natvalue:β✝h₂:p key valueleft✝:Tree β✝k:Natvalue✝:β✝right✝:Tree β✝hl:ForallTree p left✝hp:p k value✝hr:ForallTree p right✝ihl:ForallTree p (left✝.insert key value)ihr:ForallTree p (right✝.insert key value)h✝¹:¬key < kh✝:¬k < keyForallTree p (left✝.node key value right✝) β✝:Type u_1p:Natβ✝Propt:Tree β✝key:Natvalue:β✝h₂:p key valueleft✝:Tree β✝k:Natvalue✝:β✝right✝:Tree β✝hl:ForallTree p left✝hp:p k value✝hr:ForallTree p right✝ihl:ForallTree p (left✝.insert key value)ihr:ForallTree p (right✝.insert key value)h✝¹:¬key < kh✝:k < keyForallTree p (left✝.node k value✝ (right✝.insert key value)) All goals completed! 🐙 β✝:Type u_1p:Natβ✝Propt:Tree β✝key:Natvalue:β✝h₂:p key valueleft✝:Tree β✝k:Natvalue✝:β✝right✝:Tree β✝hl:ForallTree p left✝hp:p k value✝hr:ForallTree p right✝ihl:ForallTree p (left✝.insert key value)ihr:ForallTree p (right✝.insert key value)h✝¹:¬key < kh✝:¬k < keyForallTree p (left✝.node key value right✝) β✝:Type u_1p:Natβ✝Propt:Tree β✝value:β✝left✝:Tree β✝k:Natvalue✝:β✝right✝:Tree β✝hl:ForallTree p left✝hp:p k value✝hr:ForallTree p right✝h₂:p k valueihl:ForallTree p (left✝.insert k value)ihr:ForallTree p (right✝.insert k value)h✝¹:¬k < kh✝:¬k < kForallTree p (left✝.node k value right✝) All goals completed! 🐙theorem Tree.bst_insert_of_bst {t : Tree β} (h : BST t) (key : Nat) (value : β) : BST (t.insert key value) := β:Type u_1t:Tree βh:BST tkey:Natvalue:βBST (t.insert key value) induction h with | leaf => All goals completed! 🐙 | node h₁ h₂ b₁ b₂ ih₁ ih₂ => β:Type u_1t:Tree βkey:Natvalue:βk:Natleft✝:Tree βright✝:Tree βvalue✝:βh₁:ForallTree (fun k_1 v => k_1 < k) left✝h₂:ForallTree (fun k_1 v => k < k_1) right✝b₁:BST left✝b₂:BST right✝ih₁:BST (left✝.insert key value)ih₂:BST (right✝.insert key value)BST ((left✝.node k value✝ right✝).insert key value) β:Type u_1t:Tree βkey:Natvalue:βk:Natleft✝:Tree βright✝:Tree βvalue✝:βh₁:ForallTree (fun k_1 v => k_1 < k) left✝h₂:ForallTree (fun k_1 v => k < k_1) right✝b₁:BST left✝b₂:BST right✝ih₁:BST (left✝.insert key value)ih₂:BST (right✝.insert key value)BST (if key < k then (left✝.insert key value).node k value✝ right✝ else if k < key then left✝.node k value✝ (right✝.insert key value) else left✝.node key value right✝) β:Type u_1t:Tree βkey:Natvalue:βk:Natleft✝:Tree βright✝:Tree βvalue✝:βh₁:ForallTree (fun k_1 v => k_1 < k) left✝h₂:ForallTree (fun k_1 v => k < k_1) right✝b₁:BST left✝b₂:BST right✝ih₁:BST (left✝.insert key value)ih₂:BST (right✝.insert key value)h✝:key < kBST ((left✝.insert key value).node k value✝ right✝)β:Type u_1t:Tree βkey:Natvalue:βk:Natleft✝:Tree βright✝:Tree βvalue✝:βh₁:ForallTree (fun k_1 v => k_1 < k) left✝h₂:ForallTree (fun k_1 v => k < k_1) right✝b₁:BST left✝b₂:BST right✝ih₁:BST (left✝.insert key value)ih₂:BST (right✝.insert key value)h✝:¬key < kBST (if k < key then left✝.node k value✝ (right✝.insert key value) else left✝.node key value right✝) β:Type u_1t:Tree βkey:Natvalue:βk:Natleft✝:Tree βright✝:Tree βvalue✝:βh₁:ForallTree (fun k_1 v => k_1 < k) left✝h₂:ForallTree (fun k_1 v => k < k_1) right✝b₁:BST left✝b₂:BST right✝ih₁:BST (left✝.insert key value)ih₂:BST (right✝.insert key value)h✝:key < kBST ((left✝.insert key value).node k value✝ right✝) All goals completed! 🐙 β:Type u_1t:Tree βkey:Natvalue:βk:Natleft✝:Tree βright✝:Tree βvalue✝:βh₁:ForallTree (fun k_1 v => k_1 < k) left✝h₂:ForallTree (fun k_1 v => k < k_1) right✝b₁:BST left✝b₂:BST right✝ih₁:BST (left✝.insert key value)ih₂:BST (right✝.insert key value)h✝:¬key < kBST (if k < key then left✝.node k value✝ (right✝.insert key value) else left✝.node key value right✝) β:Type u_1t:Tree βkey:Natvalue:βk:Natleft✝:Tree βright✝:Tree βvalue✝:βh₁:ForallTree (fun k_1 v => k_1 < k) left✝h₂:ForallTree (fun k_1 v => k < k_1) right✝b₁:BST left✝b₂:BST right✝ih₁:BST (left✝.insert key value)ih₂:BST (right✝.insert key value)h✝¹:¬key < kh✝:k < keyBST (left✝.node k value✝ (right✝.insert key value))β:Type u_1t:Tree βkey:Natvalue:βk:Natleft✝:Tree βright✝:Tree βvalue✝:βh₁:ForallTree (fun k_1 v => k_1 < k) left✝h₂:ForallTree (fun k_1 v => k < k_1) right✝b₁:BST left✝b₂:BST right✝ih₁:BST (left✝.insert key value)ih₂:BST (right✝.insert key value)h✝¹:¬key < kh✝:¬k < keyBST (left✝.node key value right✝) β:Type u_1t:Tree βkey:Natvalue:βk:Natleft✝:Tree βright✝:Tree βvalue✝:βh₁:ForallTree (fun k_1 v => k_1 < k) left✝h₂:ForallTree (fun k_1 v => k < k_1) right✝b₁:BST left✝b₂:BST right✝ih₁:BST (left✝.insert key value)ih₂:BST (right✝.insert key value)h✝¹:¬key < kh✝:k < keyBST (left✝.node k value✝ (right✝.insert key value)) All goals completed! 🐙 β:Type u_1t:Tree βkey:Natvalue:βk:Natleft✝:Tree βright✝:Tree βvalue✝:βh₁:ForallTree (fun k_1 v => k_1 < k) left✝h₂:ForallTree (fun k_1 v => k < k_1) right✝b₁:BST left✝b₂:BST right✝ih₁:BST (left✝.insert key value)ih₂:BST (right✝.insert key value)h✝¹:¬key < kh✝:¬k < keyBST (left✝.node key value right✝) β:Type u_1t:Tree βvalue:βk:Natleft✝:Tree βright✝:Tree βvalue✝:βh₁:ForallTree (fun k_1 v => k_1 < k) left✝h₂:ForallTree (fun k_1 v => k < k_1) right✝b₁:BST left✝b₂:BST right✝ih₁:BST (left✝.insert k value)ih₂:BST (right✝.insert k value)h✝¹:¬k < kh✝:¬k < kBST (left✝.node k value right✝) All goals completed! 🐙

Now, we define the type BinTree using a Subtype that states that only trees satisfying the BST invariant are BinTrees.

def BinTree (β : Type u) := { t : Tree β // BST t }def BinTree.mk : BinTree β := .leaf, .leafdef BinTree.contains (b : BinTree β) (k : Nat) : Bool := b.val.contains kdef BinTree.find? (b : BinTree β) (k : Nat) : Option β := b.val.find? kdef BinTree.insert (b : BinTree β) (k : Nat) (v : β) : BinTree β := b.val.insert k v, b.val.bst_insert_of_bst b.property k v

Finally, we prove that BinTree.find? and BinTree.insert satisfy the map properties.

attribute [local simp] BinTree.mk BinTree.contains BinTree.find? BinTree.insert Tree.find? Tree.contains Tree.inserttheorem BinTree.find_mk (k : Nat) : BinTree.mk.find? k = (none : Option β) := β:Type u_1k:Natmk.find? k = none All goals completed! 🐙theorem BinTree.find_insert (b : BinTree β) (k : Nat) (v : β) : (b.insert k v).find? k = some v := β:Type u_1b:BinTree βk:Natv:β(b.insert k v).find? k = some v β:Type u_1b:BinTree βk:Natv:βt:Tree βh:BST t(insertt, hk v).find? k = some v; β:Type u_1b:BinTree βk:Natv:βt:Tree βh:BST t(t.insert k v).find? k = some v induction t with All goals completed! 🐙 | node left key value right ihl ihr => β:Type u_1b:BinTree βk:Natv:βleft:Tree βkey:Natvalue:βright:Tree βihl:BST left → (left.insert k v).find? k = some vihr:BST right → (right.insert k v).find? k = some vh:BST (left.node key value right)h✝:k < key(left.insert k v).find? k = some vβ:Type u_1b:BinTree βk:Natv:βleft:Tree βkey:Natvalue:βright:Tree βihl:BST left → (left.insert k v).find? k = some vihr:BST right → (right.insert k v).find? k = some vh:BST (left.node key value right)h✝:¬k < key(if key < k then left.node key value (right.insert k v) else left.node k v right).find? k = some v β:Type u_1b:BinTree βk:Natv:βleft:Tree βkey:Natvalue:βright:Tree βihl:BST left → (left.insert k v).find? k = some vihr:BST right → (right.insert k v).find? k = some vh:BST (left.node key value right)h✝:k < key(left.insert k v).find? k = some v β:Type u_1b:BinTree βk:Natv:βleft:Tree βkey:Natvalue:βright:Tree βihl:BST left → (left.insert k v).find? k = some vihr:BST right → (right.insert k v).find? k = some vh✝:k < keya✝³:BST lefta✝²:ForallTree (fun k v => k < key) lefta✝¹:BST righta✝:ForallTree (fun k v => key < k) right(left.insert k v).find? k = some v; β:Type u_1b:BinTree βk:Natv:βleft:Tree βkey:Natvalue:βright:Tree βihl:BST left → (left.insert k v).find? k = some vihr:BST right → (right.insert k v).find? k = some vh✝:k < keya✝³:BST lefta✝²:ForallTree (fun k v => k < key) lefta✝¹:BST righta✝:ForallTree (fun k v => key < k) rightBST left; All goals completed! 🐙 β:Type u_1b:BinTree βk:Natv:βleft:Tree βkey:Natvalue:βright:Tree βihl:BST left → (left.insert k v).find? k = some vihr:BST right → (right.insert k v).find? k = some vh:BST (left.node key value right)h✝:¬k < key(if key < k then left.node key value (right.insert k v) else left.node k v right).find? k = some v β:Type u_1b:BinTree βk:Natv:βleft:Tree βkey:Natvalue:βright:Tree βihl:BST left → (left.insert k v).find? k = some vihr:BST right → (right.insert k v).find? k = some vh:BST (left.node key value right)h✝¹:¬k < keyh✝:key < k(right.insert k v).find? k = some v β:Type u_1b:BinTree βk:Natv:βleft:Tree βkey:Natvalue:βright:Tree βihl:BST left → (left.insert k v).find? k = some vihr:BST right → (right.insert k v).find? k = some vh✝¹:¬k < keyh✝:key < ka✝³:BST lefta✝²:ForallTree (fun k v => k < key) lefta✝¹:BST righta✝:ForallTree (fun k v => key < k) right(right.insert k v).find? k = some v; β:Type u_1b:BinTree βk:Natv:βleft:Tree βkey:Natvalue:βright:Tree βihl:BST left → (left.insert k v).find? k = some vihr:BST right → (right.insert k v).find? k = some vh✝¹:¬k < keyh✝:key < ka✝³:BST lefta✝²:ForallTree (fun k v => k < key) lefta✝¹:BST righta✝:ForallTree (fun k v => key < k) rightBST right; All goals completed! 🐙theorem BinTree.find_insert_of_ne (b : BinTree β) (ne : k k') (v : β) : (b.insert k v).find? k' = b.find? k' := β:Type u_1k:Natk':Natb:BinTree βne:kk'v:β(b.insert k v).find? k' = b.find? k' β:Type u_1k:Natk':Natb:BinTree βne:kk'v:βt:Tree βh:BST t(insertt, hk v).find? k' = find?t, hk'; β:Type u_1k:Natk':Natb:BinTree βne:kk'v:βt:Tree βh:BST t(t.insert k v).find? k' = t.find? k' induction t with β:Type u_1k:Natk':Natb:BinTree βne:kk'v:βleft:Tree βkey:Natvalue:βright:Tree βihl:BST left → (left.insert k v).find? k' = left.find? k'ihr:BST right → (right.insert k v).find? k' = right.find? k'h:BST (left.node key value right)(if k < key then (left.insert k v).node key value right else if key < k then left.node key value (right.insert k v) else left.node k v right).find? k' = if k' < key then left.find? k' else if key < k' then right.find? k' else some value | leaf => β:Type u_1k:Natk':Natb:BinTree βne:kk'v:βh:BST Tree.leafle:kk'k < k' All goals completed! 🐙 | node left key value right ihl ihr => β:Type u_1k:Natk':Natb:BinTree βne:kk'v:βleft:Tree βkey:Natvalue:βright:Tree βihl:BST left → (left.insert k v).find? k' = left.find? k'ihr:BST right → (right.insert k v).find? k' = right.find? k'h:BST (left.node key value right)hl:ForallTree (fun k v => k < key) lefthr:ForallTree (fun k v => key < k) rightbl:BST leftbr:BST right(if k < key then (left.insert k v).node key value right else if key < k then left.node key value (right.insert k v) else left.node k v right).find? k' = if k' < key then left.find? k' else if key < k' then right.find? k' else some value β:Type u_1k:Natk':Natb:BinTree βne:kk'v:βleft:Tree βkey:Natvalue:βright:Tree βihr:BST right → (right.insert k v).find? k' = right.find? k'h:BST (left.node key value right)hl:ForallTree (fun k v => k < key) lefthr:ForallTree (fun k v => key < k) rightbl:BST leftbr:BST rightihl:(left.insert k v).find? k' = left.find? k'(if k < key then (left.insert k v).node key value right else if key < k then left.node key value (right.insert k v) else left.node k v right).find? k' = if k' < key then left.find? k' else if key < k' then right.find? k' else some value β:Type u_1k:Natk':Natb:BinTree βne:kk'v:βleft:Tree βkey:Natvalue:βright:Tree βh:BST (left.node key value right)hl:ForallTree (fun k v => k < key) lefthr:ForallTree (fun k v => key < k) rightbl:BST leftbr:BST rightihl:(left.insert k v).find? k' = left.find? k'ihr:(right.insert k v).find? k' = right.find? k'(if k < key then (left.insert k v).node key value right else if key < k then left.node key value (right.insert k v) else left.node k v right).find? k' = if k' < key then left.find? k' else if key < k' then right.find? k' else some value β:Type u_1k:Natk':Natb:BinTree βne:kk'v:βleft:Tree βkey:Natvalue:βright:Tree βh:BST (left.node key value right)hl:ForallTree (fun k v => k < key) lefthr:ForallTree (fun k v => key < k) rightbl:BST leftbr:BST rightihl:(left.insert k v).find? k' = left.find? k'ihr:(right.insert k v).find? k' = right.find? k'h✝:¬k < key(if key < k then left.node key value (right.insert k v) else left.node k v right).find? k' = if k' < key then left.find? k' else if key < k' then right.find? k' else some value; β:Type u_1k:Natk':Natb:BinTree βne:kk'v:βleft:Tree βkey:Natvalue:βright:Tree βh:BST (left.node key value right)hl:ForallTree (fun k v => k < key) lefthr:ForallTree (fun k v => key < k) rightbl:BST leftbr:BST rightihl:(left.insert k v).find? k' = left.find? k'ihr:(right.insert k v).find? k' = right.find? k'h✝¹:¬k < keyh✝:¬key < k(if k' < k then left.find? k' else if k < k' then right.find? k' else some v) = if k' < key then left.find? k' else if key < k' then right.find? k' else some value β:Type u_1k:Natk':Natb:BinTree βne:kk'v:βleft:Tree βvalue:βright:Tree βbl:BST leftbr:BST rightihl:(left.insert k v).find? k' = left.find? k'ihr:(right.insert k v).find? k' = right.find? k'h:BST (left.node k value right)hl:ForallTree (fun k_1 v => k_1 < k) lefthr:ForallTree (fun k_1 v => k < k_1) righth✝¹:¬k < kh✝:¬k < k(if k' < k then left.find? k' else if k < k' then right.find? k' else some v) = if k' < k then left.find? k' else if k < k' then right.find? k' else some value β:Type u_1k:Natk':Natb:BinTree βne:kk'v:βleft:Tree βvalue:βright:Tree βbl:BST leftbr:BST rightihl:(left.insert k v).find? k' = left.find? k'ihr:(right.insert k v).find? k' = right.find? k'h:BST (left.node k value right)hl:ForallTree (fun k_1 v => k_1 < k) lefthr:ForallTree (fun k_1 v => k < k_1) righth✝²:¬k < kh✝¹:¬k < kh✝:¬k' < k(if k < k' then right.find? k' else some v) = if k < k' then right.find? k' else some value; β:Type u_1k:Natk':Natb:BinTree βne:kk'v:βleft:Tree βvalue:βright:Tree βbl:BST leftbr:BST rightihl:(left.insert k v).find? k' = left.find? k'ihr:(right.insert k v).find? k' = right.find? k'h:BST (left.node k value right)hl:ForallTree (fun k_1 v => k_1 < k) lefthr:ForallTree (fun k_1 v => k < k_1) righth✝³:¬k < kh✝²:¬k < kh✝¹:¬k' < kh✝:¬k < k'v = value β:Type u_1k':Natb:BinTree βv:βleft:Tree βvalue:βright:Tree βbl:BST leftbr:BST rightne:k'k'ihl:(left.insert k' v).find? k' = left.find? k'ihr:(right.insert k' v).find? k' = right.find? k'h:BST (left.node k' value right)hl:ForallTree (fun k v => k < k') lefthr:ForallTree (fun k v => k' < k) righth✝³:¬k' < k'h✝²:¬k' < k'h✝¹:¬k' < k'h✝:¬k' < k'v = value All goals completed! 🐙